
EGS-relevant review of orebody 
structures
CHPM2030 Deliverable D1.3
Version: December 2016

This project has received funding from the 
European Union’s Horizon 2020 research and innovation 
programme under grant agreement nº 654100.



 

 
 

 

 

 

CHPM2030 DELIVERABLE D1.3 

 

EGS-RELEVANT REVIEW OF OREBODY STRUCTURES  
 

 

 

 

 

 

 
Summary: 

This document provides the results of laboratory investigations on ore samples wich represent 

the study sites of the CHPM2030 project, completed with samples from other ore types. The 

results are evaluated with a relevancy to the CHPM technology. The methodology for rock 

stress and strength measurements is also described. These measurements will be carried out in 

the frame of WP2 and will complete the EGS relevant properties of different ore body types 

determined in the recent study. 
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1 Executive summary 

In the provisioned CHPM technology an enhanced geothermal system would be established on a deep 

metal-bearing geological formation, which would be conducted in a way that the co-production of energy 

and metals could be possible. The aim of the recent study is to evaluate the mineralogical, petrographical 

and geochemical characteristics of different ore types which are relevant to this technology, and provide a 

methodological framework to the rock stress and strength measurements which will be carried out in the 

following phase of the project, within WP2, Task 2.1. 

The examined samples were collected from the study sites: the Cornubian Ore Field (SW England), the 

Banatitic Magmatic and Metallogenic Belt (Romania), the three mining districts of Sweden (Bergslagen, 

Skellefte and Northern Norrbotten) and the Iberian Pyrite Belt (Portugal); and were completed by further 

samples from different ore types in Hungary. 

The following laboratory examinations were carried out on the samples: X-ray diffraction, X-ray fluorescence 

spectrometry, rock and ore microscopy, and electron microprobe and EDX analysis. The samples were 

classified into six texture groups, based on the microscopic examinations. The main characteristics of the 

samples are discussed by grouping them into the represented ore types. 

Although there are several limitations for drawing general, CHPM-relevant conclusions from the examination 

results, they will serve as a good base and practical input for the following phases of the project, mainly for 

the planning and interpretation of the leaching and the petrophysical tests. 
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2 Introduction 

2.1 Objectives and role of the CHPM2030 project 

The strategic objective of the CHPM2030 project is to develop a novel technological solution (Combined 

Heat, Power and Metal extraction from ultra deep ore bodies), which will help reducing Europe’s 

dependency on the import of metals and fossil fuels, and at the same time, lower the environmental impact 

of the energy supply. 

In the envisioned technology, an Enhanced Geothermal System (EGS) is established on a metal-bearing 

geological formation, which will be manipulated in a way that the co-production of energy and metals will be 

possible. The project, at a laboratory scale, intends to prove the concept that the composition and structure 

of ore bodies have certain characteristics that could be used as an advantage when developing an EGS. 

It is also planned to verify that metals can be leached from the ore bodies in high concentrations over a 

prolonged period of time and this may substantially increase the economics of the EGS. The project also aims 

to find proof for the concept that continuous leaching of metals will increase the performance of the system 

over time in a controlled way without having to use high-pressure reservoir stimulation. According to our 

expectations, this will provide new impetus to geothermal development in Europe. In the frame of the 

project, a Roadmap will also be developed to support the pilot implementation of CHPM systems before 

2025, and full-scale commercial implementation before 2030. 

2.2 Scope and structure of Work Package 1 

The CHPM2030 project consists of nine work packages. Work package 1 – Methodology framework 

definition provides a conceptual framework for the technology of energy production and the extraction of 

metals from ore deposits located at depths below the conventional mining, where the temperature is above 

100°C. Within this work package, we synthesise our knowledge of potential ultra deep metallic 

mineralisations in Europe that could be converted into an “orebody EGS”. The characteristics of these bodies 

and their implications for EGS will also be investigated. By working on the boundaries of geophysics, 

geochemistry, hydrogeology and geoenergetics we aim to discover and examine the geological, tectonic, 

geochemical, and petrologic factors that define the boundary conditions of such novel EGS both in terms of 

energy and potential for metal recovery. 

Work package 1 consists of four tasks. Task 1.1 involves literature research and the summarisation of 

Europe’s metallogeny from EGS-relevant aspects. Task 1.2 focuses on the extension of the current 

metallogenic models to greater depths, based mostly on our knowledge about the test areas, with a 

complete European outlook. Task 1.3 investigates rock properties at laboratory conditions, and Task 1.4 

provides a synthesis of the outcomes of the former tasks within this work package. 

2.3 Scope and role of Task 1.3 

In the frame of Task 1.3 – Understanding the geochemical and rock mechanical properties of orebodies from 

an EGS perspective, we have investigated the mineralogical, petrographycal and geochemical features of 

samples which represent different ore types. The results have been evaluated in a relevancy with the 

application of the CHPM technology. Methodology for the rock mechanical measurements carried out in 

Task 2.1, in order to clarify the rock stresses and their impact on fracture formation, is also provided. 



                                                                                                                                CHPM2030 DELIVERABLE 1.3 

 

Page 5 / 59 

 
 

3 Methodology 

3.1 Role of this deliverable and relation to other work phases 

Within Work package 1, there are four deliverables. D1.1 provided a synthesis of our understanding on the 

types of metallic mineral occurrences that exist at depths below conventional mining. D1.2 summarises the 

knowledge gaps that need to be filled in order to identify target sites for a future CHPM facility. D1.3 

evaluates the CHPM-relevant mineralogical and geochemical characteristics of ore samples. Based on the 

outcomes from Tasks 1.1–1-3, D1.4 develops overall concept for converting different types of orebodies into 

an EGS reservoir. 

Within the recent deliverable, the geochemistry, mineralogy and texture of different ore types are discussed. 

It is important, because the methods to be developed in the project will target individual mineral formations 

taking advantage of their specific geochemical and structural features. 

Beside the types of metals which potentially are enriched by the ore-forming processes, it is also substantial 

to understand the origin and structure of macro- and micro-fracture systems, which are characteristic for the 

given ore deposit. In order to know more about the formation and nature of the fractures, laboratory tests 

on rock strength will be carried out in WP2 on the same samples that were used for the mineralogical-

geochemical investigations. Both the metal content, the mineralogy, the textural parameters and the rock 

mechanical features will be taken into consideration during the laboratory experiments on the metal 

mobilisation (WP2) and the metal recovery (WP3). 

3.2 The structure of this document 

This deliverable is structured in eight chapters: 

In Chapter 1, a short summary of this study is provided. 

Chapter 2 is an introductory part. Here, the objectives of the CHPM2030 project are outlined, as well as the 

structure of Work package 1 and Task 1.3, within which the recent deliverable has been prepared. 

In Chapter 3, the aim and the role of the recent document in the implementation of the project are defined 

and its relation to the other deliverables is described. 

Chapter 4 summarises the main characteristics of the ore types which are potential targets of the CHPM 

technology. These characteristics were described in details in D1.1. 

Chapter 5 provides the list and the basic properties of the 26 examined ore and rock samples. 

Chapter 6 contains the detailed description of the results from the mineralogical-petrological-geochemical 

investigations. 

In Chapter 7 a CHPM-relevant evaluation of the examinations result is presented. 

Chapter 8 describes the methodological framework for the petrophysical and rock mechanical examinations 

which will be implemented in Task 2.1. 

Chapter 9 summarises the conclusions of this study. 

Section 10 provides a list of references in which the bibliography used for preparing the recent study is 

listed. 
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4 Potential target ore body types and formations identified in D1.1 

In the frames of the CHPM project ore is a material from which metallic components of economic value can 

be extracted, and ore deposit is any permeable rock body from which this extraction is technologically 

possible via hot aqueous solution. Therefore, the term ‘ore body’ does not cover the same objects as for the 

traditional mining. 

Ore minerals are not necessarily the ones containing a specific metal in the highest concentration, but the 

ones most likely decompose or dissolve under physical conditions on the required temperature level of the 

Earth’s crust, releasing the metal to the solvent. On the other hand, the solution has to reach the surface and 

be processed for the extraction and separation of the metals, simultaneously with extraction of the heat. In a 

preliminary assessment, the following chemical elements were considered as useful and possible to process: 

Cu, Zn, Pb, Fe, As, Sb, Cd, Ag, Au, Mn, Co, Cr, Ni, U, Mo. The study was focused on sulphide mineralization 

carrying these metals. Future tests and gaining experience may modify (broaden or shorten) this list. 

The study D1.1 summarized the characteristics of ore deposits of different types, and the distribution of 

known deposits on the area of the EU member countries. The conclusions identified the most appropriate 

target types, but also emphasized the fact that almost all knowledge on existing deposits comes from a 

shallow zone of low temperature. At the start of the project four test areas were chosen with different 

metallogenetic associations; the characteristics of these areas also were briefly introduced. 

Magmatic-hydrothermal mineralization associated with intrusive bodies was the most obvious choice as a 

genetic process producing potential targets. Mechanical properties of plutonic (mainly granitic) rocks can be 

considered as appropriate for drilling and maintaining a crack system allowing fluid transport: deep 

geothermal projects so far were based on such bodies mostly. Syn- and postmagmatic hydrothermal activity 

can produce mineralization in and around the intrusive bodies. Greisens and veins are typical in the top 

region, and therefore (unless deeply buried and heated) not as prospective as lower levels of porphyry and 

skarn mineralization. These lower level mineralization types, however, are hosted mainly by the contact 

aureole of the intrusion and not by the plutonic rock itself. Most base and precious metals tend to enrich 

associated with mafic intrusions, whereas granite (or granodiorite) contact zones can host porphyry Cu and 

Mo, or Sn and W enrichments too. Skarns develop by metasomatism of a carbonate country rock. Typical ore 

minerals are sulphides and oxides, but a considerable amount of metals can be incorporated by specific 

silicates and other minerals which can prove unstable under conditions of leaching. Skarn and porphyry 

mineralization may occur linked in the same magmatic complex, depending on the host rock type and zoning 

of the metasomatism. 

Another metallogenetic environment of considerable potential is a subsiding basin in a rift or subduction 

zone, where mineralized horizons form as a consequence of submarine volcanism and exhalation. Such ore 

bodies may be relatively thin, but with large lateral extension. Most important deposit types are the volcanic 

massive sulphide (VMS) ores, the sediment-hosted (stratiform or stratabound) base metal deposits and the 

black shale horizons, where metal enrichments are bound to organic matter. The extensional basin setting 

ensures deep burial and elevated heat flow. As black shale also has a hydrocarbon generating potential, 

successions containing such beds are often explored already with geophysical means and hydrocarbon wells. 

A third possibility lies in the deep-rooted fault zones, mainly those of extensional nature and elevated heat 

flow. Shallow level hydrothermal ore deposits in this environment often originate from remobilisation of 
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metals of an earlier mineralization. Occurrence of these deposits may indicate the presence of a deep seated 

fertile rock body, which can have a potential for further leaching. 

Most known deposits of three of the four test areas belong to the intrusion related mineralization types. The 

Cornubian Ore Field (England) consists of fracture-controlled lodes and veins hosted by a series of batholiths 

and their metasomatised country rocks. The Banatitic Magmatic and Metallogenic Belt (Romania) and the 

three mining districts of Sweden (Bergslagen, Skellefte and Northern Norrbotten) expose several skarn and 

skarn-related deposits, but stratabound and stratiform base metal ores of volcanic origin also occur on these 

areas. On the fourth area, the Iberian Pyrite Belt (Portugal) these latter ore type is predominant. In all of 

these regions, deep continuation of the ore bearing complexes is expected. The geothermal gradient and the 

heat flow are higher than the average in the Cornubian Ore Field, Banatitic Magmatic and Metallogenic Belt 

and Iberian Pyrite Belt, but not in Sweden. 
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5 Listing and basic properties of the examined rock samples 

The concept of the material testing was to obtain samples representing the test areas and the potential 

target ore types, and to study the mineralogical and chemical composition, the textural and structural 

properties and the mechanical strength of these materials. As a first approach, samples were provided by 

the project partners related to these areas by country. The sample set was then extended by the University 

of Miskolc because of two reasons: 

1. Skarn samples were overrepresented in the set, so pieces of other ore types were chosen from the 

collection of the university taken from significant, well-explored deposits of the North Hungarian Range. 

2. Petrophysical tests, which will be carried out on the same samples in the frame of WP2, Task 2.1, required 

a minimal diameter which was not met by most of the specimens sent to us, so additional sampling was 

made on the dumps of an available deposit of the Banatitic Magmatic and Metallogenic Belt. 

26 samples of the total collection were used for testing. All samples except sample 22 were cut, and a part of 

the cut material was pulverised for XRD and XRF measurements. Polished surfaces for ore microscopy and 

electron microprobe analysis were made on samples containing opaque mineral grains (sulphide and oxide 

ore minerals). Rectangular sections were positioned on concentrated occurrence of the ore minerals or on 

boundaries of textural zones if samples were not homogeneous. Thin sections were made from samples of 

the country rocks and from samples comprising mostly other than opaque minerals.  

Mineralogical analyses were qualitative only as samples are not representative for the ore grade of the 

deposits, but recorded XRD data are appropriate for quantitative analysis if necessary. 9 pieces of rock were 

chosen as large enough to form the cylinder-shaped body for petrophysical testing performed and reported 

in WP2. Sample 22 served only as a large sized substitute for sample 12 in these tests, collected at the same 

site. 

The basic data of the samples are summarized in Table 5.1. The mass is given below 3 kg only, indicating 

scarcity of the material for any further tests. Most samples come from mines, except samples 23–25 which 

are drillcores from the Iberian Pyrite Belt.  

 

Id Region Site Ore type Provided by Mass (kg) Microscopy Petrophysics 

1 BMMB Baita Bihor Skarn IGR 0.18 r, t  

2 BMMB Pietroasa Skarn IGR 0.98 r, t  

3 HU Gyöngyösoroszi Vein UNIM 1.7 r, t, e  

4 HU Rudabánya MVT UNIM >3 r, t, e x 

5 HU Recsk Porphyry UNIM >3 r x 

6 HU Recsk Skarn UNIM >3 r, e x 

7 COF Craddock Moor Porphyry BGS >3 r, t x 

8 COF Herod's Foot Vein BGS 2.6 r, t  

9 BL Dannemora Country rock SGU 1.45 r, e  



                                                                                                                                CHPM2030 DELIVERABLE 1.3 

 

Page 9 / 59 

 
 

Id Region Site Ore type Provided by Mass (kg) Microscopy Petrophysics 

10 BL Dannemora Skarn SGU 2.38 r  

11 BL Dannemora Country rock SGU 1.44 t x 

12 BMMB Cacova Ierii Skarn UNIM >3 r, t, e  

13 BMMB Cacova Ierii Skarn UNIM >3 r, t, e x 

14 BMMB Baisoara Skarn UNIM >3 r, t x 

15 BMMB Budureasa Skarn IGR 2.33 r  

16 BMMB Pietroasa Skarn IGR 0.83 r, t  

17 BMMB Baita Rosie Skarn IGR 2.7 r, t, e  

18 BMMB Pietroasa Skarn IGR 1.54 r, t, e x 

19 NNB Malmberget Skarn SGU 2.15 r  

20 SK Kristinebergsgruvan Porphyry SGU 1.46 r, t, e  

21 SK Kristinebergsgruvan Porphyry SGU 1.79 r, t  

22 BMMB Cacova Ierii Skarn UNIM >3  x 

23 IPB Porto de Mel Country rock LNEG 0.41 t  

24 IPB Porto de Mel Country rock LNEG 0.44 t  

25 IPB Porto de Mel Country rock LNEG 0.8 t  

26 IPB Corvo inferior VMS LNEG 2.64 r, e  

 
Table 5.1 Basic data of the tested samples 

Regions: BL – Bergslagen, BMMB – Banatitic Magmatic and Metallogenic Belt (Apuseni Mts), COF – 
Cornubian Ore Field, HU – Hungary (North Hungarian Range), IPB – Iberian Pyrite Belt, NNB – Northern 
Norrbotten, SK – Skellefte. Microscopy: r – reflected light, t – transmitted light, e – electron microprobe. 

 

The macroscopic characteristics of the samples are shortly described below; photographs of the samples are 

shown in Figures 5.1–5.5: 

Sample 1 Molybdenite ore with disseminated molybdenite grains within a cream coloured matrix. 

Sample 2 Represents a borate mineralization with hardly any opaque minerals and abundant calcite 

where whitish material contains dark acicular minerals enriched in nests. 

Sample 3  A fragment of a calcite vein with base metal sulphides. 

Sample 4 Banded baritic lead ore from a metasomatic deposit hosted by limestone; galena grains in 

dark bands can be recognized with coarse grained white barite lenses and fine grained 

limonitic matrix. 

Sample 5 Represents an intrusion related porphyry copper deposit; a breccia with sulphide matrix and 

veins. 
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Sample 6 Originates from the same site as Sample 5. It is a massive pyrite-chalcopyrite-iron oxide ore 

from the skarn zone. 

Sample 7 It represents brecciated quartz hosted chalcopyrite, a hydrothermally formed porphyry ore 

from a granitic intrusion.  

Sample 8  Structure-bound galena ore in a foliated dark metasedimentary rock.  

Samples 9 Skarn type magnetite deposit, contains lens-shaped, dark inclusion with greenish (epidote 

enriched) rims.  

Sample 10 Skarn type magnetite deposit, massive ore. 

Sample 11 Skarn type magnetite deposit, host carbonate. 

Sample 12  Represents a magnetite deposit also enriched in sulphides, with visible chalcopyrite.  

Sample 13 Represents a magnetite deposit also enriched in sulphides, with visible chalcopyrite. 

Sample 14 Represents a magnetite deposit also enriched in sulphides, with visible chalcopyrite. 

Sample 15 Magnetite ore with no visible sulphides.  

Sample 16  From a borate mineralization, with magnetite enrichment within calcite.  

Sample 17 Diopside dominated skarn with some magnetite and molybdenite. 

Sample 18  Originates from a borate mineralization with hardly any opaque minerals and abundant 

calcite where whitish material contains dark acicular minerals enriched in nests. 

Sample 19 Magnetite ore with no visible sulphides.  

Sample 20 Chalcopyrite containing sulphide ores in a hydrothermally formed, coarse grained quartz-

dominated host rock related to a major VMS deposit.  

Sample 21 Chalcopyrite containing sulphide ores in a hydrothermally formed, coarse grained quartz-

dominated host rock related to a major VMS deposit.  

Sample 22 Represents a magnetite deposit also enriched in sulphides, with visible chalcopyrite. 

Sample 23 Fine-grained, brecciated volcanic rock with white veins. 

Sample 24 Fine-grained volcanic rock with white veins. 

Sample 25 Fine-grained volcanic rock with white veins, contains disseminated sulphide grains. 

Sample 26 Banded volcanic massive sulphide ore dominated by pyrite and chalcopyrite, also containing 

sphalerite and cassiterite in undulated, anastomosing bands of variable thickness. 
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Figure 5.1 Photographs after cutting, but before processing of Samples 1–6 (from upper left to lower right). 
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Figure 5.2 Photographs after cutting, but before processing of samples 7–12 (from upper left to lower right). 
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Figure 5.3 Photographs after cutting, but before processing of samples 13–18 (from upper left to lower 

right). 
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Figure 5.4 Photographs before processing of samples 19–21 (from left to right).
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Figure 5.5 Photographs before processing of samples 23–26. Cut surfaces were given on the samples sent to 

the UNIM (from upper left to lower right). 
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6 Mineralogical and geochemical studies 

6.1 X-ray diffraction investigations 

Samples were prepared by hand-grinding in porcelain and agate mortars. Specimens were prepared in top-

loaded sample holders (~ 1 g). Investigations were carried out on a Bruker D8 Advance diffractometer (Cu-Kα 

radiation, 40 kV and 40 mA generator settings), with vertical goniometer, in parallel beam geometry 

obtained with Göbel mirror and Vantec1 position sensitive detector (1° window opening). Measurements 

were taken in the 2–70° (2θ) angular region, with 0.007° (2θ)/29 sec recording. 

Identification of crystalline components was done with Search/Match algorithm in Bruker DiffracPlus EVA, 

after Fourier noise reduction and polynomial background subtraction of raw patterns. The Powder 

Diffraction Files (PDF) database of International Centre for Diffraction Data (ICDD) was used. 

The following mineral phases were identified in the samples: 

Sample 1 The main component is grossular, with possible Fe-substitution, accompanied by diopside, 

molybdenite and quartz. Minor wollastonite and calcite content is also detected. 

Sample 2 The main component is calcite and Mg-bearing calcite, as indicated by peak maximum 

values. Alongside with clinochlore (Mg-rich), several minor minerals were identified as 

possible components: borates of szaibelyite > ludwigite comnposition, sjogrenite (?), 

doyleite (?) and traces of kaolinite. Several minor peaks remain unsolved, possibly belonging 

to mixed species of borate end-members. 

Sample 3 The main component is Mg-bearing calcite, with minor quartz, sphalerite and galena. Traces 

of pyrite and kutnohorite were also detected. 

Sample 4 The main component is galena with barite and cerrusite, with important smithsonite, quartz 

and bindheimite. Minor bernalite and goethite with trace amounts of muscovite and 

dolomite were also detected. 

Sample 5 The main component is quartz, with major magnetite and pyrite, possibly maghemite 

content. The maghemite-like structure might also be a result of Fe-substitution in magnetite. 

Sample 6 The main components are chalcopyrite and pyrite with major actinolite content. Minor 

presence of magnetite, quartz and diopside is observed, with traces of andradite. 

Sample 7 The main component is quartz, with pyrite and minor amounts of schörl. 

Sample 8 The main component is quartz, with major galena content. Minor presence of dolomite, illite 

and tennanite is detected, with trace amounts of pyrite and clinochlore. 

Sample 9 The main component is calcite with Mg-bearing calcite, accompanied by minor quartz, 

epidote and orthoclase. Biotite is also detected, with strong preferred orientation. Presence 

of zeophyllite is not reliable by XRD alone. 

Sample 10 The main component is magnetite, with small amount of antigorite (possibly other 

serpentine species) and minor amounts of actinolite, pyrope and spessartine. The peak tails 

of magnetite indicate substitutions of Fe in its structure, possibly by Zn (franklinite 

components) and Mg (magnesioferrite component). 



                                                                                                                                CHPM2030 DELIVERABLE 1.3 

 

Page 17 / 59 

 
 

Sample 11 The main component is quartz and calcite. Important amounts of microcline, epidote and 

albite are observed. Biotite is present in trace amounts. A high Mg-bearing calcite presence 

is also possible. 

Sample 12 The main components are pyrite, magnetite and dolomite, with important amounts of 

galena. Magnetite might have Zn or Ti substitution as indicated by low-angle peak tails. 

Some minor peaks remain unresolved. 

Sample 13 The main component is “hydrogarnet” type material, hibshite-katoite mixture and grossular 

(possibly Fe-bearing). Major pyrite and diopside, minor quartz and calcite are detected. 

Sample 14 The main component is actinolite, with important quartz and pyrite content, and minor low 

Mg-bearing calcite. 

Sample 15 The sample is made up by magnesioferrite, with traces of magnesite. 

Sample 16 The main component is ankerite > dolomite double carbonate phase, with important 

fluorite, magnetite and antigorite +/- lizardite. Minor amount of Mg-bearing calcite is also 

detected. 

Sample 17 The main component is diopside, with major calcite content. Minor presence of talc, 

lizardite, quartz and traces of fluorite are detected also. Diopside is possibly Fe-bearing, less 

likely Co bearing, but the crystal structure resulting from atomic substitution are similar. 

Sample 18 The main component is calcite, with important szaibelyite content. Minor amounts of 

clinochlore and lizardite are detected also. 

Sample 19 The sample is constituted by magnetite with traces of actinolite. 

Sample 20 The main components are quartz and Fe-rich clinochlore, with major pyrite and chalcopyrite 

content. Possibility of serpentine traces presence exists. 

Sample 21 The sample is made up by quartz, with important pyrite and trace contents of chalcopyrite. 

Sample 23 The main component is quartz, Mg-bearing calcite and albite (possibly oligoclase-andesine 

components). Important contribution of Fe-rich clinochlore and muscovite is also observed. 

Sample 24 The main component is quartz and albite (possibly oligoclase-andesine components). Minor 

contribution of Mg-bearing calcite, Fe-rich clinochlore and muscovite is observed. Pyrite is 

detected in trace amounts. 

Sample 25 The main component is quartz and albite (possibly oligoclase-andesine components). 

Important contribution of Mg-bearing calcite, Fe-rich clinochlore and muscovite is observed. 

Sample 26 The main component is chalcopyrite, with major pyrite and sphalerite. Minor contribution of 

cassiterite is detected, with traces of siderite. 
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6.2 X-ray fluorescence spectrometry 

X-ray fluorescence spectrometry (XRF) is a universal method for the determination of the chemical 

composition of the sample, by using the detection of interaction between X-ray and elements in the 

analysed sample. If the energy is detected, it is defined as energy dispersive system (EDX), if the wavelength 

is measured, it is a wavelength dispersive system (WDX). The EDX system detects all the element from 9F to 
92U in the same time, but the detection limit is around 0.5-1% or even higher. The WDX system measures 

simultaneously only one element, but the detection limit is 3 or 4 magnitudes lower. It is in ppm or 10 ppm 

range. 

In sample preparation, the grain size of the sample was crushed under 65 µm in a ceramic mortar, then it 

was dried out on 120°C at 2h. The decreasing of mass was measured and loss of moisture (LOM) was 

calculated (see Table 6.3.). From the already dried powder 4.000 g was measured out and mixed by Cereox 

binder in 4 to 1 ratio and homogenized in an agate mortar. This mixture was pressed into diameter of 32mm 

pellet by pressure of 25 tones. Determination of loss of ignition (LOI) was done on 1050°C with 10°C/min 

heating up and 15min heat kept at 1050°C. The results (see in Table X.3.) are various as the samples contain 

ignitable components in different ratio. 

On the pellets, the analyses both for main and trace elements were completed by a Supermini 200 type 

WDXRF from Rigaku, which has an air cooled 200 W X-ray tube with Pd target. The radiation is induced by 

50 kV and 4.00 mA. Both the calibration and measuring of each element was done at 1.2-1.6 Pa pressure 

with ZSX driver and evaluation programme. Both in case of main and trace elements, the peak angle 

positions of the elements were measured for 40 s, while the two background angles were measured for 10 s 

on LiF200, PET and XR25 crystals. To statistically minimalism the mistakes from measuring, each element was 

measured 15 times. The main properties of the calibration for main elements are listed in Table 6.1., and for 

trace elements in Table 6.2. In case of Cu, Zn, Pb and As elements the parameters of accuracy and the 

correction cannot be defined, because for these elements one-point calibration was done on higher 

concentration standards. 

 

Element SiO2 Al2O3 MgO CaO Na2O K2O Fe2O3 MnO TiO2 P2O5 S F 

Det. lim. 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.005 0.005 0.005 0.005 0.25 

Acc. 0.76 0.65 0.14 0.11 0.14 0.18 0.28 0.009 0.033 0.019 0.005 0.10 

Corr. fac. 0.997 0.958 1.000 1.000 0.994 0.993 0.994 0.995 0.992 0.980 1.000 1.000 

Table 6.1 Properties of calibration for main elements 

Det. lim.: detection limit (%); Acc: Accuracy, based on calibration points fitting on calibration curve (%); Corr. 
fac.: Correction factor. 

 

Element Cu Zn Pb Rb Sr Ba As Cr Co Ni Zr 

Det. lim. 10 10 10 10 10 25 10 10 10 10 10 

Acc. - - - 23 11 10 - 8.8 2.5 5.2 4.0 

Corr. fac. - - - 0.986 0.998 0.999 - 0.969 0.977 0.991 0.999 

Table 6.2 Properties of calibration for trace elements 

Det. lim.: detection limit (ppm); Acc: Accuracy, based on calibration points fitting on calibration curve (ppm); 
Corr. fac.: Correction factor. 
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Sample ID 
LOM SiO2 Al2O3 MgO CaO Na2O K2O Fe2O3 MnO TiO2 P2O5 S F LOI 

% % % % % % % % % % % % % % 

1 0.23 39.7 7.5 2.48 19.7 0.05 0.28 5.21 0.445 0.039 0.218 7.6 <0.25 5.8 
2 0.41 7.7 2.4 22.1 33.2 <0.01 0.01 1.48 0.105 0.111 0.049 <0.005 <0.25 28.8 
3 0.22 3.7 0.3 0.37 49.8 <0.01 0.03 1.31 0.666 <0.005 0.049 1.8 <0.25 38.5 
4 0.15 3.1 0.3 0.1 1.1 1.2 1.4 1.2 <0.005 <0.005 <0.005 13.2 <0.25 3.7 
5 0.36 59.6 1.6 0.47 0.49 0.04 <0.01 36.5 0.073 0.481 0.009 11.0 <0.25 4.8 
6 0.39 15.8 1.2 4.5 8.8 0.8 1.1 32.9 0.11 <0.005 0.072 29.6 <0.25 13.7 
7 0.16 75.1 3.9 0.20 0.09 0.2 0.06 13.4 0.015 0.239 0.072 14.3 <0.25 9.5 
8 0.25 69.7 8.2 2.0 7.8 1.8 4.6 3.6 0.24 0.52 0.038 1.8 <0.25 4.3 
9 0.14 13.7 3.1 0.51 40.4 0.01 2.34 2.15 0.251 0.052 0.051 <0.005 <0.25 29.9 

10 0.21 18.0 0.5 6.67 2.48 <0.01 <0.01 64.7 7.0 0.008 <0.005 0.032 <0.25 0.5 
11 0.15 44.7 8.3 1.23 21.0 0.65 3.61 2.53 0.214 0.091 0.044 <0.005 <0.25 2.2 
12 0.61 2.6 0.4 6.19 8.54 <0.01 <0.01 39.8 0.070 <0.005 0.011 31.2 <0.25 18.7 
13 0.83 32.8 4.2 3.42 21.4 0.05 <0.01 15.9 0.220 0.170 0.097 13.1 <0.25 4.8 
14 1.29 46.9 0.5 4.81 11.20 0.08 <0.01 28.2 0.569 0.010 0.077 3.8 <0.25 4.1 
15 0.15 2.6 0.5 6.48 0.61 0.03 <0.01 84.6 1.46 0.016 0.037 <0.005 <0.25 0.7 
16 0.44 13.3 0.1 19.5 23.8 0.01 <0.01 15.8 0.847 0.007 0.023 <0.005 5.3 21.0 
17 1.24 47.3 0.1 21.5 19.2 0.02 0.04 0.44 0.270 <0.005 0.020 0.01 1.2 9.9 
18 0.26 1.7 0.5 26.4 34.7 <0.01 0.02 0.33 0.169 0.021 0.036 <0.005 <0.25 35.1 
19 0.03 2.6 0.4 1.44 0.55 0.06 <0.01 90.9 0.043 0.841 0.097 <0.005 <0.25 0.3 
20 0.42 33.6 8.2 5.90 0.03 0.04 <0.01 24.5 0.136 0.087 0.013 19.9 <0.25 15.2 
21 0.12 74.9 1.9 0.08 0.03 0.15 0.14 14.2 <0.005 <0.005 0.010 18.3 <0.25 10.8 
23 0.38 46.9 11.8 4.00 13.7 1.46 1.94 3.67 0.471 0.413 0.093 <0.005 <0.25 14.6 
24 0.44 56.5 13.1 4.57 5.07 1.74 1.74 5.89 0.214 0.559 0.094 0.032 <0.25 9.5 
25 0.34 53.8 15.3 3.19 6.06 2.44 2.31 5.10 0.166 0.606 0.105 <0.005 <0.25 9.2 
26 0.07 0.7 0.4 0.06 0.10 0.6 <0.01 43.4 0.006 <0.005 0.010 40.2 <0.25 19.0 

Table 6.3 Main element composition of the samples with loss of moisture and ignition results.
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Sample ID 
Cu  Zn  Pb  Rb  Sr  Ba  As  Cr  Co  Ni  Zr  

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

1 24 <10 12 <10 <10 40 <10 29 <10 14 <10 

2 10 266 405 <10 54 <25 434 29 <10 <10 23 

3 54 0.52% 575 <10 174 <25 90 16 <10 <10 19 

4 110 3.8% 7.2% <10 0.59% 19.1% 0.27% 180 <10 <10 59 

5 0.53% 92 20 <10 <10 <25 <10 58 <10 10 <10 

6 14.5% 890 190 <10 130 460 <10 230 120 940 <10 

7 0.17% 113 0.26% <10 15 101 0.28% 45 66 <10 53 

8 460 240 4.5% <10 <10 <25 <10 440 <10 <10 <10 

9 <10 27 <10 40 41 0.27% <10 18 <10 <10 38 

10 23 22 24 <10 <10 94 10 41 <10 <10 <10 

11 <10 29 23 70 49 0.23% <10 30 <10 <10 97 

12 693 <10 13 <10 <10 <25 <10 34 <10 <10 <10 

13 400 54 31 <10 <10 <25 14 52 <10 <10 17 

14 276 75 <10 <10 10 <25 <10 38 <10 28 <10 

15 <10 170 <10 <10 <10 <25 <10 54 <10 <10 <10 

16 <10 143 42 <10 29 <25 26 26 <10 <10 <10 

17 689 178 679 <10 <10 <25 89 44 18 <10 <10 

18 <10 144 118 <10 59 <25 118 21 <10 <10 11 

19 <10 <10 <10 <10 <10 <25 <10 105 <10 29 <10 

20 2.2% 0.17% 50 <10 75 <25 <10 105 <10 <10 32 

21 3.5% 1.0% 170 <10 <10 <25 <10 240 160 <10 <10 

23 56 49 <10 24 345 35 <10 48 11 20 126 

24 35 77 50 40 114 189 39 61 23 41 119 

25 <10 74 12 37 366 144 <10 60 12 38 162 

26 23.5% 15.8% 0.16% <10 <10 45 184 31 358 <10 <10 

Table 6.4 Trace element composition of the samples (in the concentration is below 1000 ppm, unit of ppm, if 

it is beyond1000 ppm, unit of % is used). 

 

By the calibration of each element, the prepared pellets from the samples were measured. In case of sample 

CHPM 4 and 6 1:9; CHPM 8 1:19 and CHPM 26-27 1:49 dilution was necessary to be done to dilute the trace 

elements into the well measurable concentration range. This also helped to avoid the strong matrix effect of 

the heavy metals for each other and also for the other elements. The dilution resulted that less decimals are 

given in the results, compared to undiluted samples. 

To be able to see the non calibrated elements, continuous scan was done on each sample with LiF200 crystal 

in range from 10° to 90°, to check the presence of the element from 21Sc to 92U. Only those samples are 

listed (Table 6.5.), where at least one element was indicated, which is not in the set of calibrated trace 

elements (Table 6.4.). Sharp concentration results cannot be defined, but this type of qualitative analysis the 

concentrations can be split at least into three concentration categories. 
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Sample ID 23V 31Ga 32Ge 34Se 39Y 41Nb 42Mo 47Ag 48Cd 50Sn 51Sb 74W 83Bi 

1 + +   +  +++   +    

4      +  + +  +++   

5    +   +       

6    + +  +       

7  +    +    +   + 

8        +  +    

11      +        

12           +   

13          +    

14       +       

16   +           

17             +++ 

18    +          

19 +             

20  +    +        

21            + + 

23   +           

24   +           

25  +    +        

26          +++ +++  + 

Table 6.5 Presence of the non-calibrated elements in range of 21Sc and 92U 

Labels: empty cell: below detection limit; +: a few 10 ppm; ++: a few 100 ppm; 
+++: concentration in 1000ppm range or over. 

 

6.3 Rock and ore microscopy 

25 samples have been examined by means of polished sections for ore mineralogy and/or by thin section for 

rock forming and gangue minerals. Most samples arrived from different skarn deposits, some of them from 

hydrothermal and magmatic deposits. One sample arrived from Corvo, representing a massive sulphide 

deposit type. 

Samples were classified where it was possible according to their ore mineral textures. We could differentiate 

6 texture groups with 2-5 samples per each. Three samples were not classified; they are kept separate. 

6.3.1 Texture group 1: Skarn rocks with very few ore minerals. Ore minerals appear only in small 
(0.5-1 mm) patches or as alteration / oxidation products after mafic minerals. 

Five samples (including host rocks) were classified in this group: 

• 2 and 18: borate-bearing skarn, 

• 17: diopside skarn, 

• 9 and 11: magnetite-bearing skarn. 
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Sample 2: Calcite-borate dominated skarn rock with minor patches and stringers of hematite 

Reflected light microscopy: Packages of hematite plates appear along fractures and in small (0.2-0.5 mm) 

aggregates (fig. 6.1). Sometimes the hematite has been altered to goethite. Relics of opacitized mafic crystals 

are also found, the opacitized parts turned to hematite as well. Some tiny (0.1 mm), anhedral magnetite 

crystals appear in the Ca-silicate skarn rock. 

Transmitted light microscopy: The most important part of the material is the cryptocrystalline, colourless and 

transparent groundmass (up to 60 %), with fibrous to lamellar serpentinite nests. Veinlets and nodules of 

pyroxene (ortho- and clino-) > quartz > intermedier plagioclase are developed, associated with opaque 

euhedral minerals and low transparency, brown to orange pleochroic crystals (possibly ludwigite). In the 

groundmass subeuhedral, rounded garnet crystals are observed, with well visible anisotropy related to 

fissures cross-cutting crystals. This observation is attributed to hydration of garnet and development of 

"hydrogarnet" species. Calcite with interstitial development is observed in several percents amount. Relicts 

of coarse grained orthopyroxenes are also found, presumably formed as interstitial phases of a garnet 

hornfels (Fig 6.2). 

     

Figure 6.1 Left: Partly opacitized (hematite) mafic mineral grains (white) (RL PPL). Right: Anhedral magnetite 

and hematite in the matrix (RL PPL). 

     

Figure 6.2 Relict orthopyroxene in garnet (isotropic) and calcite (anisotropic) matrix (TL PPL and XPL). 

Sample 18: Calcite-borate dominated skarn rock with minor patches and stringers of hematite 

Reflected light microscopy: Ore minerals were detected only in a few parts as hematite, replacing partially the 

mafic rock forming minerals. 
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Transmitted light microscopy: The rock is composed mainly of coarse-grained anhedral calcite crystals. In 

zones the calcite crystals have many small oval inclusions and acicular crystals (Fig. 6.3). Sheaf-like 

aggregates with very thin, acicular crystals appear between the calcite grains. Based on XRF and XRD analysis 

the acicular crystals are szaibelyite or ludwigite. Tiny microcrystalline masses are found around relics of 

silicate minerals. 

     

Figure 6.3 Calcite, rounded lizardite and acicular szaibelyite (TL PPL and XPL). 

Sample 17: Diopside skarn rock 

Reflected light microscopy: Tiny molybdenite(?) patches (<0.1 mm) developed rarely along fissures and 

embedded in the calcite (Fig. 6.4 right). Mafic minerals altered to magnetite and partly ilmenite and tiny 

magnetite (< 0.1 mm) embedded along calcite grains. Ore minerals comprise 1-2%. 

Transmitted light microscopy: Main mass of the rock is composed of corroded, large (2-5 mm) diopside / 

augite crystals (75%). Calcite and talc developed along cracks and interstitial zones. Calcite sometimes 

replaces completely the pyroxene crystals (15%). Talc develops along fissures and in sheaf-shaped 

aggregates (ca. 8%) (Fig. 6.4 left). 

     

Figure 6.4 Left: Twinned diopside crystals (bottom) fragmented and accompanied by acicular talc (TL XPL). 

Right: Tiny molybdenite crystals in calcite (RL PPL). 

Sample 9: calcite skarn rock 

Reflected light microscopy: Not any ore minerals were detected in the sample 

Sample 11: calcite skarn rock 
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Transmitted light microscopy: The sample appears to represent a replacement type alteration, preserving 

dolomitised or Mg-bearing calcite relicts (up to 50-60 %) in a fine grained calcite groundmass (Fig. 6.5). 

Linked to these rounded relict masses significant epidote is observed, in very fine grained, altered anhedral 

grains. This texture and composition is assumed to be the result of a metasomatic alteration of a silicate 

rock, which also explains the presence of microcrystalline quartz nodules attached to the relicts. Opaque 

grains are not observed. Epidote-clinozoisite is also found among the transformation products, as 

micrometric prismatic to lamellar crystals. Accessories of biotite (+/- phlogopite) and chlorite are observed in 

the fine grained calcite product. 

     

Figure 6.5 Calcite (bright) and epidote (high interference colours) grains in fine grained calcite matrix (TL PPL 

and XPL). 

6.3.2 Texture group 2: Contactised rocks with irregular cracks, filled by ore minerals. Cracks form 
0.5-1.5 mm thick fissures. 

Two samples were classified in this group: 

• 1: skarn molybdenite ore, 

• 8: metasomatic galena ore. 

Sample 1: Molybdenite ore developed along fissures in calcite-rich skarn 

Reflected light microscopy: Packages of molybdenite with size of 0.1-0.3 mm plates form massive fissure 

fillings with irregular path in the carbonate-rich skarn rock (Fig. 6.6 left). Sometimes molybdenite forms 

porphyric texture in the rock. Molybdenite is the only ore mineral and comprises 2-3% of the sample. 

Transmitted light microscopy: Calcite-rich skarn rock with Ca-silicates. Main rock forming mineral is clacite, 

appearing in 0.3–1 mm sized, anhedral grains. In one part of the sample, along the calcite grains anhedral 

hydrogarnet grains appear very often, reaching 0.1 mm (Fig. 6.6 right). In this part, the calcite grains contain 

wollastonite needles reaching 0.2–0.3 mm length. Along 0.2–0.5 mm thick zones the wollastonite forms 

massive, oriented aggregates. In the other part of the sample, wollastonite is found along the calcite grains 

more often compared to hydrogarnet. 
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Figure 6.6 Left: Molybdenite crystals (variegated grey) developed along an irregular fissure (RL XPL). Right: 

Anhedral calcite crystals bordered by hydrogarnet grains (nearly black spots) and acicular crystals of 

wollastonite (dark grey) (TL XPL). 

Sample 8: Brecciated shale with galena in fissures 

Reflected light microscopy: Galena as the principal ore mineral appears in anhedral grains, filling irregular 

cracks. Galena masses in some parts reach 3-5 mm thickness. Galena grains are slightly oxidized along their 

borders. Rarely chalcopyrite and pyrite appears at the rim zone of the galena or as inclusions in it, reaching 

0.1 mm (Fig. 6.7 right). 

Bacterial pyrite can rarely found in small aggregates in the shale. 

Transmitted light microscopy: The rock is composed of clay minerals, having strongly oriented texture. This 

shale is fractured along the schistosity plane and at adjoined fissures filled by microclystalline quartz. Widely 

opened fissures are filled by quartz crystals of 0.1–0.3 mm size (Fig. 6.7 left), dolomite/ankerite crystals 

reaching 0.5 mm and by the galena ore. 

     

Figure 6.7 Left: Fractured shale, fissures are filled with microcrystalline quartz (TL XPL). Right: Galena grain 

(white) with inclusions of pyrite (creamy) and chalcopyrite (yellow) (RL PPL). 

6.3.3 Texture group 3: Massive magnetite ore, having cracks and micro-fissures 

Three samples were classified in this group: 

• 10: massive magnetite ore sample 

• 15: massive magnesioferrite ore sample 
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• 19: massive magnetite ore sample 

Sample 10: Massive magnetite ore 

Reflected light microscopy: Massive ore, mineral grains cannot be distinguished. Massive magnetite is cut by 

microcracks with several mm length, filled by gangue minerals (Fig. 6.8 left). The massive ore includes 0.1–

0.3 mm sized relics of silicates, forming poikilitic texture. At the edge of the massive ore, connected to a 1 

mm thick veinlet filled by fine-grained quartz, pyrrhotite occurs interlocked with magnetite (Fig. 6.8 right). 

Some tiny (0.05 mm) pyrite and very rarely chalcopyrite appears in the veinlet embedded by quartz. 

Transmitted light microscopy: Massive ore, thin section was not made 

     

Figure 6.8 Left: massive magnetite (white) with fissures (RL PPL). Right: Pyrrhotite (creamy) intergrown with 

magnetite (grey) (RL PPL). 

Sample 15: Massive magnetite ore 

Reflected light microscopy: Massive, homogeneous magnesioferrite sample. Anhedral magnesite crystals 

occupy voids and veins similarly like on Fig. 6.8 (left) in sample 10. 

Sample 19: Massive magnetite ore 

     

Figure 6.9 Left: Massive magnetite (white), hematite (lighter) and ilmenite (darker) occur as fissure filling (RL 

PPL). Right: Massive magnetite grain (white) with ilmenite (grey) developed at a fissure (RL PPL). 

Reflected light microscopy: Massive magnetite sample, composed of isometric magnetite crystals with 0.2–

0.7 mm size. The texture is polygonal, magnetite crystals interlock 120° angles at triple borders. Along micro-
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fissures the magnetite is altered to hematite and ilmenite (Fig. 6.9). The latter minerals comprise 2-5% of the 

sample. 

Transmitted light microscopy: Massive ore, thin section was not made 

6.3.4 Texture group 4: Pyrite-rich porphyric ore with considerable amount of chalcopyrite 

Four samples were classified in this group: 

• 5: metasomatic porphyry Cu ore 

• 6: metasomatic massive Cu ore 

• 7: metasomatic porphyry Cu ore 

• 20: metasomatic porphyry Cu ore 

Sample 5: Porphyric pyrite-magnetite-chalcopyrite ore 

Reflected light microscopy: 60% of the sample is composed of ore minerals with a quite complex texture. Ore 

minerals comprise the matrix of the sample, embedding quartz-rich inclusions with 10–15 mm diameter. 

Composition of the matrix changes from pyrite-dominant parts to magnetite and/or chalcopyrite rich parts. 

The 15 mm thick quartz grain that is found in the central part of the sample is fractured to 1–2 mm 

subgrains. Along the micro-cracks, the quartz holds anhedral inclusions of pyrite and chalcopyrite. Size of the 

inclusions varies between 0.05–0.4 mm. These inclusions appear as individual grains or in combination, 

where pyrite supplants the chalcopyrite (Fig. 6.10). 

Pyrite appears in veinlets with irregular shape and 0.5–1 mm thickness as well as in the fractured ore zone, 

composed of fractured, anhedral-subhedral pyrite grains size of which varies from 0.5 to 5 mm. Micro-cracks 

between the pyrite grains sometimes are filled by chalcopyrite. 

Most part of the fractured ore zone has a porphyric pyrite-magnetite-chalcopyrite texture type, which 

appears surrounding the large, central quartz grain. The matrix of this ore type is massive pyrite, comprised 

of 0.2–0.5 mm grains. The pyrite matrix includes anhedral, isometric magnetite grains with size between 

0.2–0.7 mm. Massive chalcopyrite appears at the boundary of the magnetite and around fractures among 

the magnetite grains (Fig. 6.11). 

     

Figure 6.10 Left: Subhedral pyrite crystals (white), supplanting chalcopyrite (yellow) formed in fractures of 

the quartz aggregate (dark grey) (RL PPL). Right: Anhedral pyrite (white) and chalcopyrite (yellow) grains 

formed in fractures of the quartz aggregate (dark grey) (RL PPL). 



                                                                                                                                CHPM2030 DELIVERABLE 1.3 

 

Page 28 / 59 

 

 

 

There is one part of the sample (5%) which is strongly fractured and chalcopyrite forms the matrix, 

embedding the anhedral and subhedral pyrite grains. 

These different textures show the intensive fracturing of the rock. First ore mineral, appearing in the 

fractures was magnetite, followed by chalcopyrite and later by pyrite. 

Transmitted light microscopy: 80% of the sample consists of ore minerals, thin section was not made 

     

Figure 6.11 Left: Anhedral magnetite grains (grey), embedded in the pyrite (white) and chalcopyrite (yellow) 

matrix (RL PPL). Right: Chalcopyrite (yellow) fills the fractures between magnetite grains (grey). Pyrite (white) 

occurs in subhedral grains and in aggregate, as the last ore mineral (RL PPL). 

Sample 6: Pyrite, chalcopyrite and iron oxide ore 

Reflected light microscopy: 80% of the sample is composed of ore minerals. About 40% of the surface of the 

sample is a massive pyrite aggregate with 2.5–3 mm diameter. The pyrite aggregate is comprised of 

subhedral crystals with 2–5 mm size. Individual pyrite crystals with the same size are found also, separated 

from the aggregate. The pyrite is fractured by microcracks with 0.5–2 mm frequency and contains quartz and 

magnetite-hematite inclusions of 0.1 mm or less (Fig. 6.12 left). Tetrahedrite is also present as an accessory 

(Fig. 6.12 right). 

     

Figure 6.12 Left: Corner of a large pyrite grain with lamellar pyrite and hematite in chalcopyrite (same site as 

on figure 6.36 right) (RL PPL). Right: Tetrahedrite in chalcopyrite matrix (RL PPL). 

The subhedral pyrite aggregate and crystals supplant the chalcopyrite-rich ore. Matrix of the sample is 

composed of massive chalcopyrite with poikilitic inclusions of, or micrographic intergrowth with quartz 



                                                                                                                                CHPM2030 DELIVERABLE 1.3 

 

Page 29 / 59 

 

 

 

(Fig.6.13 left). Size of the quartz inclusions varies from 0.05 to 1 mm. Tiny (<0.1 mm) anhedral pyrite and 

magnetite grains appear in the chalcopyrite, usually around boundaries with the quartz. 

About 10% of the sample is composed of radially-fibrous aggregates of magnetite-hematite (Fig. 6.13 right). 

These aggregates appear between the pyrite crystals, supplanting them and at the boundary of the large 

pyrite aggregate with the massive chalcopyrite. These radial aggregates supplant also the chalcopyrite, which 

may be found in tiny inclusions among the magnetite-hematite needles. 

Transmitted light microscopy: 80% of the sample consists of ore minerals, thin section was not made 

     

Figure 6.13 Left: Graphic intergrowth of chalcopyrite (yellow) and quartz (dark grey) with disseminated pyrite 

(white) and magnetite (mid-grey) grains (RL PPL). Right: Fibrous aggregates of magnetite (mid-grey needles) 

and hematite (bluish-grey needles) supplanting pyrite (white) and chalcopyrite (yellow) (RL PPL). 

Sample 7: Pyrite-rich porphyric ore with chalcopyrite 

Reflected light microscopy: Euhedral-subhedral pyrite crystals and subhedral chalcopyrite grains appear 

scattered in the gangue. Pyrite crystals reach a few mm size, while chalcopyrite occurs in 0.2–0.7 mm grains. 

     

Figure 6.14 Left: Slightly altered chalcopyrite (yellow) with covellite at the boundary (blue) (RL PPL). Right: 

Shattered pyrite grain (white) with fissures, partly oxidized to hematite (dark grey) (RL PPL). 

The sample is moderately weathered. Some pyrite crystals are partly oxidized to hematite and goethite, 

while covellite occurs at the edge of the chalcopyrite grains (Fig. 6.14). Pyrite grains are often shattered by 

microcracks, along which the hematite and goethite appears. Sometimes chalcopyrite appears as crack-filling 

in the shattered pyrite crystals (Fig. 6.15). 
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Figure 6.15 Left: Shattered pyrite crystal (white) with chalcopyrite (yellow) in fissures (RL PPL). Right: Heavily 

corroded pyrite grain altered to goethite (reddish) (RL PPL). 

Transmitted light microscopy: Thin section was not made 

Sample 20: Moderately weathered pyrite-rich ore with chalcopyrite 

Reflected light microscopy: Subhedral pyrite grains with a few mm size appear scattered in the sample, 

forming clusters from 3–6 grains. Pyrite grains have tiny microcracks with 0.2–0.5 mm frequency. 

Chalcopyrite and magnetite rims the pyrite crystals at some parts of the sample (Fig. 6.16). Pyrite comprises 

15%, chalcopyrite and magnetite appears in 1-2%. Pyrrhotite-chalcopyrite inclusions are found in the pyrite 

grains. Size of these inclusions is usually below 0.05 mm, sometimes reaches 0.2 mm. 

Transmitted light microscopy: The sample comprises ~20 % opaque mineral, ~50 % polycrystalline quartz and 

~30 % clinochlore and accessory minerals. The quartz is inequigranular with undulatory extinction and high 

number of fluid inclusions. The clinochlore is developed as acicular-fibrous aggregates, and fine grained 

interstitial filling. The chlorite is colourless to pale green (slightly pleochroic) and has anomalous interference 

colours of pale green attributed to Fe>>Mg content, also segments of dark violet which are dark brown at 1N 

probably caused by Mn or Ti substitution (Fig. 6.17). Scattered occurrence of muscovite lamellae is also 

observed, marking a restricted K-mobilisation in the favour of Fe and Mg. 

     

Figure 6.16 Left: Pyrite crystals (white) rimmed by chalcopyrite (yellow) with magnetite inclusions (dark grey) 

(RL PPL). Right: Pyrite grain (white) with inclusions of pyrrhotite (rose-grey) and chalcopyrite (yellow) (RL 

PPL). 
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Figure 6.17 Pleochroic chlorite with variable interference colours (TL PPL and XPL). 

6.3.5 Texture group 5: Porphyric pyrite-magnetite ores 

Three skarn samples were classified in this group: 

• Sample 12: pyrite-magnetite skarn ore with chalcopyrite 

• Sample 13: pyrite-magnetite skarn ore with chalcopyrite 

• Sample 14: pyrite-magnetite skarn ore with chalcopyrite 

Sample 12: Skarn pyrite-magnetite ore 

Reflected light microscopy: The sample is a massive pyrite ore sample with highly complex texture. Other ore 

minerals present are magnetite, chalcopyrite and hematite. 

Main part of the sample is composed of massive pyrite, in many parts fragmented by oxidation-exsolution 

zones of magnetite developed interstitially around pyrite. 

Massive pyrite in many parts contains lamellar zones with nearly the same reflection intensity and slightly 

bluish colour, reaching 50–100 μm length and 10–30 μm width (Fig. 6.18 left). First it was interpreted as 

arsenopyrite lamellae in the pyrite, but arsenopyrite was not detected by XRPD or microprobe. Scanning 

microprobe show that these lamellae are also composed of pyrite, but it is not excluded that they are 

contaminated with very low silver content (?). 

These lamellae are sometimes rimmed by elongated magnetite, formed by oxidation-exsolution of pyrite 

(Fig. 6.18 right). Magnetite appears in anhedral patches within the pyrite and in other parts as zones rimming 

the pyrite. The frequency of exsolution is very changeable. There are parts, composed of massive pyrite 

reaching few mm-s, then parts with pyrite grains of 10–50 μm and other parts where exsolution takes place 

in submicron size range. The pyrite-dominant massive ore is surrounded by calcite grains of 3–5 mm size. At 

the rim of the pyrite ore, sulphosalts (tetrahedrite-tennantite?) and chalcopyrite appears in anhedral flakes 

and grains developed along 10–30 μm long microcracks. Sometimes patches of sulphosalts with sphalerite 

and chalcopyrite appear also in the massive ore (Fig. 6.19 left). 

Transmitted light microscopy: Coarse-grained dolomite appears in cavities of the massive pyrite-magnetite 

ore. Texture of the carbonate is polygonal, formed by contact metamorphism from carbonate grains (Fig. 

6.19 right). At the edge of the massive ore, coarse-grained dolomite forms the matrix, having tiny magnetite 

inclusions along the grain boundaries. 
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Figure 6.18 Left: Massive pyrite (creamy with bluish lamellae) and patches of magnetite (dark grey) (RL PPL). 

Right: Pyrite-magnetite exsolution with very variable size range (RL PPL). 

     

Figure 6.19 Left: Anhedral chalcopyrite (yellow) and tetrahedrite-tennantite (mid-bluish gray) masses 

developed along microcracks in calcite (dark) (RL PPL). Right: Polygonal texture of coarse-grained carbonate 

rock, resembling to contact marble (TL XPL). 

Sample 13: Skarn pyrite-magnetite ore 

Reflected light microscopy: Ore minerals appear in the sample as late phases of precipitation, filling anhedral 

and angular cavities left after crystallization of silicates and carbonates. Main mass of the ore is composed of 

pyrite, including the same slightly bluish lamellae as it was found in sample 12 (Fig. 6.20). The lamellae have 

10–30 μm width and extend to 100 μm length. These lamellae usually develop along cracks in the pyrite, 

mainly subparallel to the cracks but also at high angle. Cracks are usually filled by hematite. Forming graphic 

texture, pyrite includes magnetite and hematite exsolution zones, appearing in different frequency: from 

100–200 μm to submicron size. 

Sometimes pyrite contains pyrrhotite and chalcopyrite grains near the boundaries with gangue minerals. 

Transmitted light microscopy: The matrix of the sample is colourless, isotropic material, with local anisotropy 

developed as lamellar pattern. Calcite like fissure filling material is observed. Hypidiomorphic and anhedral 

pyroxene (diopside?) crystals are developed associated to opaque minerals and low birefringence-low relief 

lamellar products, probably "hidrogarnet". Opaque components are developed as stock-work of pyrite 

(anisotropy to dark blue may indicate chemical substitutions). Sphalerite (medium grey, isotropic) and 

magnetite (grey, isotropic) inclusions are frequent at < 10 μm size, hematite (light grey, red at xN) is 
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developed on expense of magnetite. Chalcopyrite (yellow, greenish at xN) of ~10 μm is present in relict, 

etched crystals. Associated to suplhide cementing material, euhedral augite and diopside crystals are 

developed. Veinlets have pyrite filling, oxidized to "limonite". Relicts of euhedral garnets with anisotrophy 

developed in lamellae are observed, with nodules of pyrite + sphalerite replacement. 

     

Figure 6.20 Left: Massive pyrite (white with bluish lamellae) with magnetite-hematite inclusions (dark / mid 

grey) (RL PPL); same area as on figure 6.39 right. Right: Fine-grained dissolution of pyrite (white) and 

magnetite (dark grey) (RL PPL). 

Sample 14: Skarn pyrite-magnetite ore 

Reflected light microscopy: This sample resembles to specimens No 12 and 13 but there are differences. 

Pyrite grains form masses with cm-size, intergrown with acicular-fibrous crystals and inclusions of the 

gangue minerals. Pyrite in this sample has the same light bluish lamellae as in samples 12 and 13 in the 

massive pyrite grains (Fig. 6.21). There is another pyrite mass, having elongated structure, which was formed 

by replacing original mafic (actinolite by XRPD) mineral grains. Very few chalcopyrite grains develop at the 

boundary of fractured pyrite. 

     

Figure 6.21 Left: Massive pyrite (white with bluish lamellae) with inclusions of acicular grains. (RL PPL). Right: 

Massive pyrite (white) with oval inclusions of magnetite (dark grey) (RL PPL). 

Transmitted light microscopy: The sample is made up by a stockwork of opaque minerals associated with 

grainy green and yellow groundmass, presumably the alteration product of the host rock, built up by 

colourless, anhedral, strongly reacted grains. The matrix is built up by fine grained colourless material, with 

interference colours of tremolite. The yellow – pleochroic in pale yellow – and green – pleochroic in green – 
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grains are also amphiboles, assumed to be Fe-bearing tremolite and actinolite. Anhedral isolated quartz grain 

are also observed. The opaque mineral is pyrite, with amphibole inclusions. In the matrix some relics of 

anhedral grains with serpentine minerals are observed. Larger nodules of polycrystalline quartz with 

amphibole inclusions are characteristic. Veinlets of sanidine are developed (Fig. 6.22). Opaque fraction 

(~10%) is exclusively pyrite, with only a few small grains resembling chalcopyrite. 

     

Figure 6.22 Sanidine vein in amphibole matrix (TL PPL and XPL). 

6.3.6 Texture group 6: Banded massive ores 

Five samples were classified in this group, two ore and three country rock samples which supplement the 

Corvo VMS ore: 

• 4: baritic Pb-Zn ore 

• 26: VMS Cu-Zn-Sn ore 

• 23, 24, 25: volcanics of the IBERIAN PYRITE BELT 

Sample 4: baritic Pb-Zn ore 

     

Figure 6.23 Left: Galena (bright, partly altered to grey cerussite) and sphalerite (grey) in barite matrix (dark 

grey) with pyrite grains (RL PPL). Right: Galena (isotropic, dark) and geocronite (anisotropic, grey) in barite 

matrix (RL XPL). 
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Reflected light microscopy: The sample has a banded texture with variable proportions of barite, quartz and 

ore minerals. Pyrite and galena-sphalerite assemblages often form fragments embedded in barite. Patchy 

masses of galena partly altered to cerussite also fill the voids of the barite (Fig. 6.23 left). Galena is in some 

places associated with an anisothropic, typically fibrous sulphosalt (geocronite according to EDX 

measurements) (Fig. 6.23 right). 

Transmitted light microscopy: The sample comprises dominantly inequigranular polycrystalline barite (~70 %), 

calcite (~10 %) and opaque minerals with translucent opacitized phases (~20 %) (Fig. 6.24). "Limonitic" 

patches in the calcite enriched parts consist of goethite. Minor amount of disseminated muscovite lamellae 

are characteristic. 

     

Figure 6.24 Transparent barite matrix with translucent and opaque grains; bands of different grain size and 

proportions of these minerals (TL PPL and XPL). 

Sample 26: massive stratiform chalcopyrite ore with pyrite and sphalerite 

Reflected light microscopy: The sample has a layered texture. Characteristics of the layers change by 2–3 mm. 

Main minerals are chalcopyrite, pyrite and sphalerite. In some parts cassiterite appears as well. 

     

Figure 6.25 Left: Subhedral and anhedral pyrite grains (white) in the sphalerite (dark grey) and chalcopyrite 

(yellow) matrix. Middle part of the sphalerite contains anhedral mass of cassiterite (RL PPL). Right: Subhedral 

and anhedral pyrite grains (white) in the chalcopyrite (yellow) matrix with little sphalerite (dark grey) (RL 

PPL). 

Chalcopyrite is the dominant mineral in the sample and forms the groundmass in most of micro-seams. 

Grains of chalcopyrite cannot be distinguished. In other micro-seams the groundmass is partly or mostly 
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replaced by sphalerite, which appears in general as masses. There is one micro-seam where isometric or 

prismatic crystals of sphalerite are partially replaced by chalcopyrite, forming a very fine-grained sieve 

texture. 

Appearance of pyrite is manyfold. It usually forms individual anhedral or subhedral grains from a few 

micrometers size till 0.2–0.3 mm. Large (0.2–0.3 mm) pyrite grains are rounded and the texture shows 

rotation of these grains in the fine-grained groundmass. Even larger pyrite grains (up to 1 mm) had been 

shattered and the voids between the fragments are mainly filled up by sphalerite. There are seams where 

pyrite is fine-grained (few micrometers) and anhedral, while in another seam it forms euhedral-subhedral 

crystals of 0.05–0.1 mm. 

There was one seam found where small (up to 0.1 mm) anhedral masses of cassiterite appear inside the 

sphalerite (Fig. 6.25). 

Transmitted light microscopy: Massive ore, thin section was not made. 

Sample 23: metasomatic felsic volcanic rock 

The sample is Ca-metasomatised felsic rock, the rounded quartz grains indicate sedimentary or 

volcanoclastic origin. Thin veinlets of muscovite with minor biotite component are cross-cutting the texture. 

The matrix is a mixture of fine grained quartz and intermediary plagioclase with prismatic-acicular habit. 

Calcite veins of twinned anhedral crystals contain ~10 μm sized chalcopyrite grains, hematite is developed 

on the expense of pyrite or magnetite. In the matrix anhedral to subhedral ilmenite grains are observed, 

occasionally with anatase rim, associated mainly to muscovite veinlets with euhedral orthoclase crystals (Fig. 

6.26). Also a relict of a strongly sericitized plagioclase phenocrystal is observed. Coarse grained apatite 

occurs in euhedral crystals as accessory component. 

     

Figure 6.26 Euhedral orthoclase grains in muscovite matrix with a sericitized relict of a plagioclase in the 

middle (TL PPL and XPL). 

Sample 24: cataclastic felsic volcanic rock 

Cataclastic rock with high acidic plagioclase, sericite and quartz content, formed by hydrothermal 

fragmentation of previously metasomatized volcanics. Large porphyroblasts containig chlorite flakes, 

plagioclase crystals often calcitized and quartz are isolated by microcrystalline quartz-sericite matrix. Chlorite 

flakes are pseudomorph-like and interference colour suggests Mg>>Fe content, probably by the alteration of 

hornblende. Nodules of prismatic plagioclase crystals indicate the transformation by devitrification of 

volcanic glass, calcite is developed as pore filling component. Monazite is a common accessory mineral, in 
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crystal groups or nodules of some hundreds of micrometers (Fig 6.27). In the fine grained plagioclase-quartz 

dominated texture calcite veins are frequent. Opaque fraction (<1 %) is pyrite in magnetite. 

     

Figure 6.27 Monazite assemblage on the rim of a porphyry quartz grain in glassy matrix with calcitized 

plagioclase grains (TL PPL and XPL). 

Sample 25: cataclastic felsic volcanic rock 

Strongly altered and calcitized clastic rock with relicts of plagioclase phenocrystals replaced by calcite. Calcite 

vein are characteristic, the matrix is composed of quartz, plagioclase, sericite and clinochlore with patches of 

calcite. The chlorite grains in the matrix have an oxidation rim consisting of "limonite" and probably anatase. 

The original plagioclase crystals were prismatic, idiomorphic, alteration was developed as zoning of calcite 

and sericite rich rims (Fig. 6.28). Pyrite is associated to thin chloritic-sericitic veinlets overgrown by later 

calcite veins. 

     

Figure 6.28 Relict of a plagioclase crystal replaced by calcite and sericite (TL PPL and XPL). 

6.3.7 Non-classified samples 

Three samples have different texture and were not classified in the above or other groups. 

Sample 3: Vein-type polymetallic ore 

Reflected light microscopy: The sample is a part of a vein of 5–10 cm thickness, filled zonally. The sample 

shows the central zone with weak (10–15%) sphalerite and galena content, followed by the zone of 

polymetallic (pyrite, chalcopyrite, galena, sphalerite) ores, then by a zone of coarse-grained calcite, 

supplanting a zone of fine-grained calcite with disseminated pyrite. 
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The central zone is composed of a fine-grained (<0.1 mm) quartz and calcite (0.1–0.3 mm) matrix. This 

matrix includes the subhedral sphalerite crystals that reach 0.3–0.5 mm size (Fig. 6.29). Galena and pyrite 

appear in the fissures of the vein, sometimes in the micro-cracks of the sphalerite as well. 

The polymetallic zone has a carbonate matrix of 0.1–0.2 mm grains. Ore grains are found disseminated in the 

matrix, comprising 5-10%. Chalcopyrite appears in tiny (0.1–0.3 mm), subhedral crystals with pyrite 

inclusions in the core. Sphalerite appears in the same size range at the boundary of the chalcopyrite, often 

supplanting it. The coarse-grained (5–8 mm) calcite is pure, does not contain ore minerals. 

Transmitted light microscopy: The central zone is composed of elongated, fine-grained (<0.05 mm) quartz 

and carbonate, embedding the subhedral sphalerite crystals (fig. 6.30). The matrix of the second zone, 

bordering the central zone contains carbonate grains of different size (0.05–0.5 mm). This zone has a dark 

brown colour, probably due to Fe contamination of the carbonate. XRPD detected kutnohorite from the 

sample. The coarse-grained calcite zone is composed of 2–3 mm crystals with perfect grain boundaries, 

along which these crystals supplant the microcrystalline (0.1–0.2 mm) carbonate-pyrite mass. 

     

Figure 6.29 Left: Polymetallic zone: anhedral sphalerite grains (mid-grey) supplanting chalcopyrite (yellow) 

which has pyrite inclusion in the core (white) (RL PPL). Right: Central zone: coarse-grained sphalerite (darker 

grey) with galena (bluish mid-grey) and pyrite (whitish) appearing in the fissure of the sphalerite (RL PPL). 

 

     

Figure 6.30 Texture of the central zone: fine-grained quartz and carbonate matrix, embedding subhedral 

crystals of sphalerite. Left: transparent: quartz and calcite, brownish crystals: sphalerite (TL PPL). Right: 

white-grey fine-grained: quartz, pearly: carbonate, black: sphalerite (TL XPL). 
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Sample 16: banded iron ore with disseminated magnetite 

Reflected light microscopy: Ore minerals are composed dominantly of magnetite. Along microcracks and 

grain boundaries sometimes hematite occurs with irregular shape or tiny (few micrometers) anhedral 

inclusions (Fig. 6.31. left). 

Magnetite grains have 0.4–2 mm size, they are intensively cracked (by 0.1–0.3 mm) and have inclusions of a 

few μm size. 

Transmitted light microscopy: Magnetite-rich patches develop on the contact zone of carbonate rock and 

microcystalline quartz veinlets. The carbonate rock has a microcrystalline texture with anhedral grains of 

0.05–0.1 mm. In the contact zone of the carbonate and the quartz veinlet, masses of columnar-prismatic Ca-

silicate minerals develop with very low birefringence (Fig. 6.31. right). 

     

Figure 6.31 Left: Anhedral magnetite grains (mid-grey) with hematite inclusions (lighter bluish grey) (RL PPL). 

Right: Columnar Ca-silicate minerals in the contact zone of limestone and quartz veinlet (TL PPL). 

Sample 21: disseminated pyrite-chalcopyrite ore, Kristinebergsgruvan 

Reflected light microscopy: This sample contains subhedral-anhedral grains of pyrite reaching 0.1–0.2 mm 

disseminated in the gangue (Fig. 6.32). Pyrite comprises ca. 15% of the sample. Pyrite grains often connected 

by anhedral masses composed of chalcopyrite and magnetite. Chalcopyrite grains are intensively fractured, it 

was not possible to make a good quality polished section to examine it in detail. 

     

Figure 6.32 Subhedral and euhedral pyrite grains (white) interconnected by chalcopyrite (yellow) and 

magnetite (dark grey) grains. (RL PPL). 
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Transmitted light microscopy: The sample is a hydrothermal quartzolite with ~12% chalcopyrite and ~10 % of 

pyrite. Quartz is polycrystalline, inequigranular, developed in several generations. The smaller grains are 

developed linked to idiomorphic-hypidiomorphic pyrite cubes, often distorted. Euhedral apatite inclusions 

are developed in quartz. Lamellae of muscovite and grainy biotite or chlorite are characteristic associated to 

pyrite, developed interstitially in the opaque grains. Fine lamellar to prismatic fan-displaced crystal groups of 

pumpellyite are also observed. 

6.4 Electron microprobe and EDX measurements 

A JEOL JXA-8600 Superprobe electron microprobe with upgraded SAMX control system (15–20 kV, 20 nA, 

PAP correction) was used for the measurements. Those samples were chosen for measurements only, where 

optical microscopy, XRD and XRF results indicated problems in mineral identifications which could be solved 

by this method. Textures are shown on backscattered electron (BSE) images. Compositions were measured 

without standards. Elements included by the minerals can be detected reliable only if their concentration 

exceeds cca. 0.1%–0.5%. 

Sample 3 

The matrix of the sample is quartz and calcite. Calcite contains some percents of Fe, Mn and Mg in 

inhomogeneous distribution, causing stained appearance on BSE images. Cracks are often filled by clay 

minerals. Oldest sulphide minerals are pyrite grains (pentagonal in some cases), then chalcopyrite, sphalerite 

and (less common) galena forms some 10 μm magnitude, anhedral grains, finally disseminated arsenopyrite 

overprints the earlier grains, forming coatings around them (Fig. 6.33). 

     

Figure 6.33 Left: disseminated arsenopyrite (apy) in calcite (cc) matrix, grown over pyrite (py), sphalerite (sp) 

and quartz (q). Right: Fe-containing sphalerite and chalcopyrite grown over pyrite in calcite matrix. 

Sample 4 

The matrix of the sample is banded, comprising either barite with embedded quartz and sulphide grains or 

quartz with mica and clay minerals, barite and pyrite. Sulphide minerals are pyrite, sphalerite, galena and 

geocronite (a Pb-Sb sulphosalt) (Fig. 6.34). Fragments of bacteriopyrite, sometimes associated with 

sphalerite are relict assemblages in the barite bands (Fig. 6.35). In several places secondary carbonate or 

sulphate minerals are associated with the primary sulphides as oxidation products (cerussite and 

bindheimite with galena and geocronite, smithsonite with sphalerite). Limonite also occur containing Pb and 

Zn. 
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Figure 6.34 Barite matrix with sulphides; the same scene with changed contrast on both sides. Order of 

brightness: quartz (q), pyrite (py), sphalerite (sp), barite (ba), geocronite (gc) and galena (ga). 

     

Figure 6.35 Left: concentric bacteriopyrite (py) fragment embedded in barite (ba) matrix, overgrown by 

galena (ga) and geocronite (gc) (also inside pyrite rings). Bindheimite (bh) occurs as an alteration product of 

the lead sulphides. Right: boundary of a barite and a quartz dominated band. Barite (ba) contains galena (ga) 

and cerussite (cer), an alteration product of galena; sphalerite (sp) and smithsonite (sm) also occur at the 

edge in a similar relation. Quartz (q) is vuggy (black patches) filled partly with micas and illite (ill), barite, 

some pyrite (py) and a vein of iron and titanium oxides. 

Sample 6 

The bulk of this sample consists of chalcopyrite and pyrite. Non-sulphide minerals are represented by 

acicular actinolite (with variable iron content), isometric grains of a Ca-Al-Fe garnet (in composition between 

andradite and grossular), some diopside and two types of iron oxide. One of these is anhedral and isometric, 

possibly magnetite, the other, possibly hematite, forms typically fibrous or lamellar, fan-shaped assemblages 

together with pyrite, sometimes also with chalcopyrite (Fig. 6.36). Rare molybdenite was also found. 
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Figure 6.36 Left: chalcopyrite (cpy) with magnetite (mag), actinolite (ac), diopside (do) and garnet (gr). Right: 

corner of a large pyrite (py) grain with chalcopyrite (cpy) containing lamellar pyrite (py) and iron oxide 

(hematite?) (same site as on figure 6.12 left). 

Sample 9 

This sample comprises two parts, a dark lens-like inclusion within a white host. The matrix of the host is 

calcite and epidote, which contains disseminated quartz-biotite assemblages. Epidote is often associated 

with zircon and allanite grains, occasionally also with molybdenite. Enrichment of epidote is observed at the 

boundary zone, where a lamellar K-Fe-Mn-Mg-Ba-silicate was also found, possibly hisingerite (Fig. 6.37 left), 

which could be an alteration product of the minerals of the lens shaped inclusion. This lens consists mainly of 

zoned, Ba-containing potassic feldspar (orthoclase), Fe-Mg micas (biotite) and epidote (Fig. 6.37 right). 

     

Figure 6.37 Left: flakes of a lamellar silicate mineral (hi: hisingerite?) in calcite (cc) – epidote (ep) matrix, dark 

patches are voids. Right: molybdenite (mo) in calcite (cc), epidote (ep), potassic feldspar (kfs) and mica (mic). 

Zonation of the feldspars is due to variable barium content. 

Sample 12 

The sample is a dolostone with iron oxide and sulphide mineralization. Main ore minerals are pyrite, 

magnetite and hematite, together in patches within the carbonate texture (Fig. 6.38 left). Minor chalcopyrite 

is also present, typically as small crystals of 10–20 μm, in some cases densely disseminated within an iron 

oxide grain. Mg-dominant ankerite and barite were found in fissures or veins (Fig. 6.37 right), Bi-telluride 

(tetradimite?) and sphalerite were found as inclusions of magnetite. 
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Figure 6.38 Left: Minerals in the order of brightness: chalcopyrite (cpy, small grains), pyrite (py), magnetite 

(mag), hematite (hem), dolomite (dol) and talc (tc); Right: sulphide veins in fissures (along cleavage) of 

dolomite, a vein of Fe-Mg carbonate (ankerite, ank) is also visible. Bright patches are pyrite and chalcopyrite 

(py+cpy). 

Sample 13 

The sample consists of diopside and garnet as host rock for iron oxide and sulphide mineralization similar to 

that in sample 12. Pyrite seems to have grown in more than one generation, having twofold appearance (a 

massive and a spongy type), but without measurable differences in composition (Fig. 6.39). Small 

chalcopyrite and Bi-telluride grains were found, and a μm sized native gold grain in pyrite as well. 

     

Figure 6.39 Left: Pyrite (py) and iron oxide (hematite) fills the space between garnet (gr) and diopside (do) 

assemblages. Right: boundary of the ore mineral assemblage zone (same area as on Fig. 6.20 right). Pyrite 

(py) and magnetite (mag) cannot be distinguished, hematite (hem) is darker. Garnet (gr) and diopside (do) at 

the boundary. 

Sample 17 

The rock consists mainly of cracked diopside, the cracks being filled with fluorite, lizardite and talc (Fig. 6.40 

left). The spacing of the fissure net is of 0.1 mm magnitude, the fissure filling veinlets are 20–30 μm thick. 

Occasionally sphalerite, galena and molybdenite grains were also found in it. In a nest of some mm in 

diameter Pb-Bi-Cu sulphosalts of the aikinite-bismuthinite series were found embedded in serpentinite, 

associated with some small grains of galena and Ag-telluride at the rim of the diopside (Fig. 6.40 right). 
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Figure 6.40 Left: diopside (do) matrix with fissure-filling fluorite (fl), lizardite (li) and talc (tc). Right: aikinite 

(ai) in serpentinite, a nest within diopside (do) matrix. 

Sample 18 

In this sample calcite matrix embeds rounded grains of lizardite, grains consisting of mixed calcite and 

lizardite (possibly pseudomorphosa of precursor minerals) and acicular assemblages of szaibelyite (Fig. 6.41). 

Typical accessories are the Ti–REE(–Zr) oxides, in many cases having the same habit as the szaibelyite 

(possibly replacing it), but always in calcite. Szaibelyite can be also replaced by iron oxide in some stacks. 

     

Figure 6.41 Left: calcite (cc) matrix with lizardite (li), grains comprising calcite and lizardite (cc+li) and acicular 

szaibelyite (szb). Right: Szaibelyite (szb) and Ti-REE oxides (REE) in calcite (cc) and lizardite (li). 

Sample 20 

This sample comprises large stacks of pyrite, sphalerite and chalcopyrite, the grain size exceeding 1 mm. The 

non-sulphide rock matrix consists of chlorite, potassic feldspar and quartz (Fig. 6.42). Chalcopyrite and 

sphalerite occurs together, typically grown over cracked pyrite or rims of pyrite crystals, but sphalerite also 

appears as round inclusion in pyrite, and chalcopyrite also appears within quartz matrix or on rim of quartz 

grains in chlorite. Typical accessories of chlorite are Ti-oxides and monazite (or, rarely, xenotime) in 

assemblages of some 10 μm, together with small zircon inclusions. Galena and molybdenite occur also in 

chlorite, sometimes with pyrite. Small silver minerals in chalcopyrite and Bi-telluride within pyrite were also 

found. 
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Figure 6.42 Left: pyrite (py) with chalcopyrite (cpy) on the edges and molybdenite (mo) in chlorite (chl) and 

quartz (q). The black patch is a void with monazite (mz) assemblages at the edges. Right: potassic feldspar 

(kfs) and chlorite (chl) with a chalcopyrite-monazite assemblage (cpy+mz). Bright fissures of the feldspar are 

filled by pyrite. 

Sample 26 

This massive sulphide ore consists almost exclusively of chalcopyrite, pyrite, sphalerite and cassiterite. The 

texture is banded. The differences are the proportions of the ore minerals and the grain size (Fig. 6.43). The 

size varies between 1 and 100 μm from band to band, but the magnitude is the same inside each band for all 

four coprecipitated ore minerals. In some sites there are more than one generations of these: cracks of 

sphalerite filled with pyrite, or cracks of large sized pyrite grains filled with chalcopyrite and sphalerite 

enclosing cassiterite grains. Occasionally 1–10 μm scale galena and tetrahedrite were also observed. 

     

Figure 6.43 Left: banded texture with pyrite (py, chalcopyrite (cpy), sphalerite (sph) and cassiterite (ct). Right: 

Cassiterite (ct) enriched band in pyrite (py, chalcopyrite (cpy) and sphalerite (sph). 
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7 CHPM-relevant evaluation of the material testing results 

7.1 Limitations of the sampling 

When an evaluation has to be made from the results summarized in chapter 6, it is very important to 

consider the given conditions and limitations of the sampling which determine the relevancy of any 

conclusion. These limitations are discussed in the followings: 

1. Sampling was targeted on known ore bodies. Ore in this context means raw material for traditional 

mining and processing with appropriate enrichment of ore minerals in any host rock. These bodies 

are rather inhomogeneous, and the spatial extension of the high-grade parts may be small within 

low grade matrix. Ore samples were taken mostly from high grade parts, with respect to the 

enrichment of visible (>0.1 mm size) ore minerals, typically sulphides and oxides. In some cases, 

additional samples represent the country rocks. When an EGS project is realized, it is very probable 

that – even if an ore body is hit – fluid flow will penetrate and leached material will come from a 

large volume of low grade material (not considered as ore in a traditional mineral resource 

prospecting) with a small contribution of high grade ores. For leaching experiments, however, it is 

best to start with small amounts of high grade materials to obtain measurable results. 

2. Sampling was made on surface outcrops or on material coming from shallow levels not 

corresponding to the typical depth of an EGS project. Firstly, most mineralization processes produce 

zoned mineral assemblages and rock alterations, and hydrothermal processes require given 

pressure–temperature conditions existing at distinct shallow crustal levels. Tectonic processes, 

subsidence and burial (or uplift and exhumation) may transfer any ore type to the depth appropriate 

for an EGS project, but in that case one can reckon with progressive alteration of the ore and the 

rock forming minerals and the structure of the rock as well. Secondly, outcropping material is also 

subject of an alteration called weathering, an oxidative process in a medium of meteoric water 

typically, which changes the mineralogical and chemical composition of the rock. However, 

weathering can be regarded as a low temperature equivalent of the alteration caused by the 

leaching during the pumping of an oxidative fluid, therefore weathered samples may resemble to a 

subsequent state of the rocks affected by a working EGS project. 

3. The number of the samples is small. Although the samples were taken as ‘typical’ for certain 

deposits, these are in no way representative either for the deposit type or for the mineralized area. 

A sample set bigger by one or two magnitudes would be required even for characterizing a single 

deposit when grade, structure and complex mineralogy are studied. On the other hand, rock forming 

and typical ore minerals (without quantitative evaluation), which will likely determine the 

composition of a fluid penetrating the rock, can be found in these hand-picked rock pieces already. 

4. Samples represent areas, ore and rock types picked out previously. In the proposal of the CHPM 

project four test areas were delineated. All of these areas have their characteristic metallogeny, 

which does not cover the possible multitude of any deposit types. A majority of the samples (most of 

those from the Banatitic Magmatic and Metallogenic Belt and Sweden) comes from skarn deposits. 

This is a very significant ore type from our point of view, because it develops in carbonate rocks 

contactized by magmatic intrusions which may be ideal targets for EGS projects with regard to 

spatial extensions, depth level and permeability as well. A further group (including those from the 

Cornubian Ore Field) represents situations where the original host rock is not carbonate, but still the 

ores are related to intrusive or volcanic bodies. A single ore sample (supplemented with 3 country 
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rock samples) from the Iberian Pyrite Belt represents the stratiform ores, namely the VMS type. One 

stratabound, sediment-hosted ore type was involved from Hungary only; other stratiform ores, black 

shales are missing from the sample set. 

5. Samples do not contain information on structure of the rock body. Pieces of rock chosen for cutting 

and making sections are cohesive blocks without any open joints and fractures. Besides the intact 

part, systematic joint sets or broken fault zones may exist and control the fluid flow. Mechanical 

properties and permeability of these blocks are not equal with those of the large-scale rock body. 

7.2 Composition of the samples 

As one of the aims of WP1 is to identify and characterize the ore types which are relevant for the CHPM 

technology, the samples are grouped accordingly and a short overview is given on the most important 

minerals and metals found in them (Table 7.1). 

Id Site Ore type 
Country rock / gangue 

minerals 
Ore / accessory minerals 

1 Baita Bihor 
Skarn, sulphide 
molybdenum ore 

silicate (gr): Mg, Fe 
carbonate: Ca 

phosphate: Ca, Y 
sulphide: Mo 

2, 18 Pietroasa Skarn, borate 
carbonate: Ca, Mg 
silicate (py, amph, gr): Ca, 
Mg, Fe 

borate: Mg 
oxide: Fe 

15, 16 
Budureasa, 
Pietroasa 

Skarn, magnetite 
carbonate: Ca, Mg, Fe 
silicate (amph): Ca, Mg 

fluoride: Ca 
oxide: Fe, Mn 

17 Baita Rosie 
Skarn, sulphide 
polymetallic ore 

silicate (py): Ca, Mg, Fe 
fluoride: Ca 
sulphide: Pb, Zn, Mo, Bi, Cu 

12, 13, 
14 

Cacova Ierii, 
Baisoara 

Skarn, magnetite 
and sulphide Cu ore 

carbonate: Ca, Mg 
silicate (gr, amph): Ca, 
Mg, Fe 

oxide: Fe 
sulphide: Fe, Cu 

9, 10, 
11 

Dannemora Skarn, magnetite 
carbonate: Ca 
silicate (q, Kfs, mica, ep): 
Ca, K, Mg, Ba 

oxide: Fe, Mn, Ti, Nb 
sulphide: Fe 
silicate: Zr, REE 

19 Malmberget Skarn, magnetite – oxide: Fe, Ti, V 

20, 21 
Kristinebergs-
gruvan 

Porphyry, sulphide 
Cu-Zn ore 

silicate (q, chl): Si, Mg, Fe 
phosphate: Ca, REE 
oxide: Fe, Cr, Co, Ti 
sulphide: Fe, Cu, Zn 

7, 8 
Craddock Moor, 
Herod's Foot 

Porphyry and vein, 
sulphide Cu-Pb ore 

silicate (q): Si 
oxide: Fe, Ti, Nb 
sulphide: Fe, Pb, Cu, As 

3 Gyöngyösoroszi 
Vein, sulphide Pb-Zn 
ore 

carbonate: Ca, Mg, Mn, 
Fe 

sulphide: Fe, Zn, As, Cu, Pb 

5, 6 Recsk 
Porphyry and skarn, 
sulphide 
polymetallic ore 

silicate (amph, gr): Ca, 
Mg, Fe 

oxide: Fe, Cr, Co, Ni 
sulphide: Fe, Cu, Zn, Pb, Mo 

4 Rudabánya MVT Pb-Zn ore 
carbonate: Ca, Mg, Fe, Sr 
sulphate: Ba 

sulphide: Fe, Zn, Pb, Sb, As 
oxide: Fe, Zn, Pb 
(secondary) 

23, 24, 
25, 26 

Porto de Mel, 
Corvo inferior 

VMS Cu-Zn-Sn ore 
silicate (q, fs, mica, chl): 
Ca, Mg, Fe, K, Na 
carbonate: Ca 

phosphate: Ca, REE 
oxide: Sn, Fe, Ti 
sulphide: Fe, Cu, Zn 

Table 7.1 Major mineral components and metals/metalloids of the samples. Samples are grouped according 

to the type of ore mineralization they represent 
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In Table 7.1 not only the most common metals are indicated, but several others which are present in 

relatively high concentration compared to their common abundance. When dealing with compositional data, 

not only the most abundant rock forming and ore minerals, but accessories are also important. Accessories, 

alteration products not linked directly to the ore formation but enriched in a larger rock volume may 

represent a quantity of similar magnitude as the ore minerals themselves. Some of the samples can be 

regarded as a connected group, so these are mentioned together; others have special properties. 

The main characteristics of the samples are summarized below: 

Samples representing skarn mineralization: 

Sample 1 is a single-sulphide ore of molybdenite, representing a special deposit type not common in the 

BMMB. Iron is bound to silicate minerals and not to sulphides or oxides. High phosphorous concentration 

indicates the presence of phosphate minerals, possibly apatite and some Y- and REE-containing phases, 

which were not identified, with a grain size of μm-scale. 

Samples 2 and 18 represent another special and not common deposit type of the BMMB, comprising mainly 

Mg-borates in carbonate-silicate matrix. Calcite is abundant. Fe and S content is low, sulphide minerals are 

missing, oxides-hydroxides are subordinate (probably weathering products in the samples only). 

Samples 15 and 16 are iron oxide ores with carbonate country rocks of a common deposit type, representing 

a situation where sulphide minerals are missing. While sample 15 represents almost pure Fe-Mg-oxides, 

sample 16 is dominated by the carbonate matrix and a high fluorite content. 

Sample 17 has a silicate matrix and base metal sulphide minerals (mainly sulphosalts) hosted by it. The 

speciality of the situation lies again in the presence of fluorite in veins crosscutting the matrix. 

Samples 12, 13 and 14 represent a common deposit type of iron oxides combined with iron and minor 

copper sulphides hosted by skarn rocks. Magnetite and pyrite occur in very close connection to each other. 

The matrix of sample 12 is carbonate, matrices of samples 13 and 14 are silicate dominated. 

Samples 9, 10 and 11 together represent a deposit comprising iron oxide and minor iron sulphide (sample 

10), and the host rocks are metamorphic (samples 9 and 11), both with carbonate and silicate minerals. 

Barium content of the silicate rock forming minerals and presence of Ti-oxides and attached HFSE bearing 

minerals are significant characteristics. 

Sample 19 is iron oxide with some titanium content from a skarn deposit. Carbonates and sulphides are 

missing, silicates are subordinate. 

Samples representing porphyry and vein-type mineralization: 

Samples 20 and 21 represent a common situation where quartz dominated silicate matrix (sample 20) or 

almost pure quartz matrix (sample 21) contains iron, copper and zinc sulphide minerals (while lead is 

subordinate), also iron oxides in sample 21. Carbonates are missing. Ti-oxides and REE-phosphates of small 

grain size were found as common accessories. 

Samples 7 and 8 are quartz hosted iron, copper, lead sulphides (also arsenic sulphides in sample 7) with 

subordinate zinc. This is a similar situation as in the previous case with a switch between lead and zinc, 

sphalerite and galena. Iron and titanium oxides are also present, and titanium oxides also incorporate some 

niobium. Carbonates are missing. 

Samples 5 and 6 represent quartz-hosted (sample 5) and massive (sample 6) iron oxide and iron and copper 

sulphide mineralization with significant contribution of lead, zinc and molybdenum. This is the rich 
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polymetallic variation of the quartz-hosted sulphide ores. Oxides also incorporate some chromium and 

nickel. 

Sample 3 is a carbonate vein hosting polymetallic (iron, zinc, arsenic and lead) sulphides (copper is 

subordinate). Silicates are not typical. 

Sample representing MVT-type mineralization: 

Sample 4 represent a special deposit type of barite hosted iron, lead and zinc sulphides, with significant 

bismuth content and with secondary oxide-hydroxide phases. Carbonates and silicates are also present in 

minor quantity. 

Samples representing VMS mineralization: 

Samples 23, 24 and 25 represent volcanic host rocks of the massive iron, copper, zinc sulphide and tin oxide 

ore of sample 26. The deposit is special in some characteristics (like the cassiterite content), but it can be 

regarded as common in the Iberian Pyrite Belt. The silicate rocks also contain iron and copper sulphide or 

iron oxide grains and a significant amount of phosphates (also REE phosphates) as accessories. 

The described sample set provides an opportunity for testing of several compositional variations, both of 

common and special properties: 

- carbonate hosted iron-rich oxide mineralization; 

- carbonate hosted iron-rich oxide and sulphide mineralization with or without base metals; 

- carbonate hosted base metal sulphide mineralization; 

- silicate/quartz hosted sulphide mineralization with different base metal assemblages; 

- silicate hosted iron-rich oxide mineralization; 

- borate, phosphate and fluorite containing mineralization; 

- single-sulphide (molybdenite) mineralization; 

- barite-hosted sulphide mineralization. 

7.3 Role of mineralogy and deposit type in planning the CHPM technology 

The mineral information should be used to engineer proper leaching fluids. It could be searched if there is a 

possibility to couple the useful target minerals/elements with particles, minerals having electric/magnetic 

properties, or give selectively the target minerals proper surface coating to make them separable from the 

rest of the components. 

It is highly probable that, beyond useful metals, other elements will get into solution in relatively high 

concentration, like arsenic from sulphides or barium from feldspars. Excess mobilization of iron, calcium and 

magnesium should also be envisaged. These elements all have to be processed. Some of the co-liberated 

mineral components, like fluorine, might be extremely aggressive chemicals contributing to the 

decomposition of minerals which would be stable otherwise, and causing heavy corrosion of pipes and 

equipment. 

Textural properties are likely to play an important role during leaching of the rocks. In a heterogeneous 

mineral assemblage different elements have not equal reaction speeds not only depending on chemical and 

crystallographic structure, but also on grain size and habit. Anisometric (lamellar and acicular) and small 

grains have larger specific surface area compared to isometric and large ones, therefore these may react 
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faster. A temporal change of the solution can also be envisaged, as composition of the rock and fluid flow 

paths are changing due to the fluid-rock interaction during leaching. 

As for the ore deposit type, from technological aspects the skarns are preferable targets since (at least at 

near surface conditions) their carbonate matrix can be dissolved relatively easily, while the relatively stable 

silicate minerals remain almost intact and may act as proppants, while dissolved carbonates produce 

secondary permeability enlarging the reactive surface of the minerals. In the pressure-temperature range 

expected in an EGS project this stability relation might alter, but it remains still probable that carbonates, in 

contrast with silicates will be dissolved without significant insoluble residue. 
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8 Methodology for the petrophysical tests 

8.1 Introduction to the description of methodology 

During the research work outlined in Task 1.3, the characteristics of potential deep ore bodies relevant to 

common heat and metal extraction are investigated. These investigations have included ore mineralogy, 

texture and geochemical characterization, which may lead to a realistic interpretation of the thermal 

properties, fluid and heat flow characteristics.  

In the following phase of the project, within Task 2.1, the different petrophysical characteristics will also be 

tested, experiments will be carried out on the samples, and this may lead to the better understanding of rock 

stresses and their impact on fracture formation in the target test sites.  In the present report, only the 

methods for these petrophysical are selected and briefly described. The planned tests are fractal simulation 

technique, acoustic tests under tri-axial load, and tri-axial strength measurements of the samples. The 

mineralogical and petrological features clarified in Task 1.3 will serve as an input for the petrophysical tests. 

For these tests, samples will be selected from those which were used in Task 1.3.   

Knowledge on petrophysical conditions and rock parameters is needed for planning the CHPM technology, in 

order to know if sufficient permeability is available for the in-situ application of leaching. 

The importance of petrophysical parameters has several aspects: 

- The most economic way to obtain information about rocks in unexplored depth is using geophysical 

techniques – these techniques require measured petrophysical parameters of the forecasted 

lithologies during evaluation. 

- To access the target lithologies at the planned depth, a secure and efficient drilling technology has to 

be used, and its design is based on petrophysical parameters. 

- To leach orebodies at the planned depth, microfractures should be enhanced or reopened and 

maintained – this requires detailed knowledge of rock stresses and rock strength. 

Since samples from the target geologies and the target depths are very scarce or not available, we will apply 

various indirect methods: 

- Petrophysical information learned from deep drilling programs; 

- Fractal geometric simulation of fracture propagation; 

- Acoustic tests at elevated pressure on surface samples;  

- Rock mechanical tests on surface samples. 

These indirect approaches necessarily bring several drawbacks to the modelling: 

- Surface samples are de-stressed; their state is markedly different from their deep counterparts; 

- Surface orebodies are affected by oxidation and weathering; their mineralogy is not alike that of the 

in-situ orebodies at depth; 

- Time cannot be modelled, i.e. neither the pressure, nor temperature and material flows can be 

modelled in laboratory for the time analogous to geological processes, which may be active at great 

depth in virgin terrains. 

These inevitable weaknesses should be considered when creating these models and using them for planning.  
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8.2 Parameters influencing the application of CHPM technology; selection and setup of possible 
laboratory testing methods  

In our view the EGS technology requires the existence of a fracture system. The spatial distribution of the 

fractures principally depends upon two main factors: (1) the primary stress state and (2) the pre-existing 

fractures.  

The direction and the relative size of the primary main stresses define the direction of the resulting 

fractures. However, the main stress directions are not obligatorily coincident with the largest vertical and the 

smallest horizontal stress directions. This approximation is however acceptable, because most 

measurements take place in drillholes, where the largest main stress has vertical direction. 

An existing fracture is easier to reopen than to create a new fracture. The difference of the two pressure 

values (one of fracking and the other of re-opening a pre-existing fracture) is equal with the tensile strength 

of the rock. With increasing depth the tensile strength becomes smaller than the primary stresses of the 

rock-body. It means, that at greater depths the influence of the pre-existing fractures diminishes.  

8.3 Petrophysical Information learned from deep drilling programs 

Most analogous information for planned works should come from previous experience of deep scientific 

drilling programmes. The deep scientific drilling in different countries is now globally registered, published 

and made partially investigable under the umbrella of ICDP – International Continental Scientific Drilling 

Program (http://www.icdp-online.org/).  

Although the ICDP projects do not especially aim at mineral exploration or commercial extraction of 

elements, some of the drillholes were planned and some of them completed on mineralized regions 

throughout the world, and their finding should be incorporated in our further research and design works. 

Without going into details of the results, the realized European deep scientific drilling programs are 

summarised in Table 8.1. 

 

Locality Country Drillhole ID Max depth 
(m) 

Year Reference 

Krafla Iceland IDDP-2 2,210 2009 Ármansson et al 
(2014) 

Are Sweden COSC-1 2,497 2014- Lorenz et al 
(2015) 

Outukumpu Finland  2,516 2004-2010 Kukkonen (2011) 

Kola Russia KSDB 12,566 1970-1994 RAS (1998) 

Bayreuth Germany KTB-1 10,000 1994 Emmermann et al 
1997 

Table 8.1 Realized deep scientific drilling programs in Europe. 

To characterize the magnitude of petrophysical problems encountered, the summary results of the 

Outukumpu drillhole is cited here (Kukkonen et al 2011): From this borehole 1992 core samples were taken 

and subjected to petrophysical laboratory measurements of the at the Geophysical Laboratory of the 

Geological Survey of Finland (GTK). Sampling was approximately at one meter intervals. Density and porosity, 

http://www.icdp-online.org/
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magnetic susceptibility and the intensity of remanent magnetization, electrical properties (resistivity and 

chargeability), P-wave velocity and thermal conductivity were determined.  

They concluded that the depth along the drill core and the density or susceptibility of cores have got no 

systematic relationship.  P-wave velocity and specific resistivity tend to decrease with depth. The porosity of 

mica schists increases with depth, but the drill core bulk densities do not change. Microfracturing due to 

pressure release possibly explains part of this effect. Remanent magnetization in black shales decreases 

compared to the surface – it is explained by changes in the pyrrhotite structure. Drilling results could be used 

to calibrate the seismic survey results of further 15 commercial ore exploration programs (Airo et al 2011). 

This and many other well-published information should be screened, reviewed and interpreted with the 

special objective outlined in the CHPM H2030. 

8.4 Fractal geometric simulation of fracture propagation 

Investigations of the spatial distributions of fracture networks in fractured rock bodies are essential for 

accurately understanding fluid flow within, and storage capacity of, reservoir rock masses.  

Given that the porosity of the matrix in fractured hard rock bodies (igneous, metamorphic or carbonate) is 

usually negligible, the spatial distributions and behaviour of individual fracture clusters are essential, as 

subsurface fluids are mostly linked to the fracture network within the rock. Because several fracture 

networks can coexist in fractured reservoirs without any actual communication occurring between them, 

identifying and analyzing communicating clusters in detail within the whole fracture system is particularly 

important. This is hampered by the fact that hydraulically active fracture clusters are generally beyond the 

resolution of high-scale seismic and low-scale well-log and microstructural studies.  

Due to the subsequent deformation events that occur in rock bodies, the size distribution of individual 

fractures is relatively wide, ranging from sub-microscopic to several hundred meters in scale. However, 

certain characteristic parameters of the individual fractures are comparable between different scales, 

enabling detailed mathematical modelling of the fracture clusters based on parameters gained at a given 

scale by detailed analysis of the rock body. The main goal of such simulations is to develop a three-

dimensional model of the fracture network of the rock body at the scale of the entire reservoir, based on 

observed lithological parameters and the inferred structural evolution history. A detailed investigation of the 

modelled fracture network can help us to gain a better understanding of the hydrodynamic parameters of 

the reservoir. 

One of the most important descriptive parameters of fractures is their length, or in three dimensions using 

the disk model, the diameters of the disks. Several studies have described the size distribution of fractures of 

a given generation. There is a general agreement that the size distribution of fracture lengths is usually 

highly asymmetric; the number of small fractures significantly overwhelms the number of large ones. 

In contrast to the length and aperture, where definitions are relatively straightforward, spatial density of 

fractures is an attribute that has been defined in several ways due to theoretical considerations. It has been 

systematically proven by empirical data that fracture networks behave geometrically as fractal-like objects, 

regardless of the lithological parameters or the structural evolution of the rock body. This enables a complex 

analysis of the disks representing discrete fractures, specifically in terms of their size (diameter, aperture) 

and spatial distribution at a given scale. The spatial distribution of the midpoints of fractures has been 

analysed with regards to scale; the fractal dimension is used as a proxy to describe the density of midpoints. 

This is accomplished by an algorithm known as box-counting. 
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In the simulation, we rely on the fractal nature of the studied pattern when comparing densities at different 

scales. The spatial distribution of fractures, if they behave as fractals, is the same at all scales. 

REPSIM code (M. Tóth et al. 2004) is one of the fracture network modelling tools that use the fractal 

geometry-based DFN method. Accordingly, the set of disks representing discrete fractures are generated 

using the following recursive algorithm: 

1. The studied area is subdivided into grid blocks of homogenous properties (generator elements); 

2. Blocks received at step i are subdivided into n (∈ N) further blocks yielding n3 blocks of equal size 

(r/n); 

3. Based on the fractal dimension calculated for the given generator elements (N(r) = r −D), the smaller 

blocks containing the central points of the fractures are randomly selected; 

4. Steps 2 and 3 are recursively repeated; 

5. When a given threshold value is reached, the centres of blocks containing fractures represent the 

centres of the fractures (fracture seeds); 

6. From the given distributions, randomly chosen parameters (length and orientation) are used to 

create the disks around the fracture centres; 

7. Using (2), aperture is calculated for each individual fracture (M. Tóth and Vass 2011). 

8.5 Acoustic testing methods 

The acoustic laboratory of the Department of Geophysics, University of Miskolc is equipped with a digitally 

controlled test system including 2-channel ultrasonic testing device, a triaxial pressure cell and a load frame 

for the uniaxial load of the samples. The measurements can be carried out on cylindrical samples with 

diameter 35 mm and length 80-120 mm. It is required that the endcaps of the samples are parallel and 

smooth cut. 

For the determination of the longitudinal (P) and transverse (S) wave velocities the pulse transmission 

technique (Toksöz et al. 1979) is used. The samples are placed between the pressure stamps of the triaxial 

cell, which includes the two pairs of piezoelectric crystals. Transducers in the stamps have 1 MHz 

eigenfrequency and are sealed against the confining pressure.  

The pressure cell enables triaxial loading ( 321   ), maximum 300 kN force in axial direction and 80 

MPa confining pressure onto the mantle of the sample. The pulse generator of the ultrasonic 2-channel 

testing device transmits a voltage pulse (run time 10 ns) which starts acoustic waves in the rock sample. The 

receivers transform these acoustic signals to voltage pulses. The arrival times of the pulse can be detected by 

the software GMuG/GL Test Systems PCUSpro, i.e. from the length of the sample it is possible to calculate P 

and S wave velocities.  

The signal quality depends on the properties of the rock, i.e. in very porous and/or coarse grained rock 

measurement can be difficult (especially for S waves in wetted rocks, because S waves cannot physically 

propagate in liquids). 

We perform measurements under varying uniaxial stresses within the Freely Programmable Interface 

module of the software DION 7. The uniaxial load is increased stepwise from the required minimal load up to 

the maximal one. On the plateaus, equilibration times are embedded for the relaxation of the samples. At 

the end of each plateaus the P and S wave velocities are determined. We apply 256-fold stacking to increase 
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the signal-to-noise ratio. After reaching the last measurement point, the load is decreased stepwise and the 

velocities are determined similarly. With these measurements, the acoustic hysteretic behaviour of the 

samples can be studied, which provide information about the speed of reopening of microcracks 

(qualitatively) and the accidental making of new microcracks. 

A rock physical model was developed at the Department of Geophysics for the description of pressure 

dependence of acoustic velocities. According to the model, the velocity data (  and   are the P and S 

wave velocities, respectively) measured at different pressures ( ) are processed in joint inversion 

procedure, where the direct problem is defined by the following equations: 

 ))exp(1( V00  -- , ))exp(1( V00  -- . 

After determining the model parameters ( 0 , 0 ) P and S wave velocities at 0 , 0 , 0  - the P and S 

wave velocity drops, i.e. the velocity differences between maximal and zero stresses, V  - rock physical 

parameter, the logarithmic stress sensitivity of velocity drops), the P and S wave velocities can be calculated 

for any uniaxial pressure of interest. If pressure dependent P and S wave velocities are available, and the 

density of the sample is known, dynamic elastic moduli can be determined: compression (bulk) moduli ( K ), 

shear moduli (= first Lamé parameter,  ), Young’s moduli ( E ), second Lamé parameter ( ): 
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8.6 Rock strength measurements 

For the measurements of strength and elastic properties of rock samples the equipment of the Mining 

Engineering Department of the University of Miskolc will be used:  

- Hydraulic test loading machine up to 1000 kN loads  

- Triaxial cell and hydraulic unit up to 300 bar confining pressure  

- Cells for measuring load and displacement and QUANTUM-X data acquisition system produced by 

HBM (Hottinger Baldwin Messtechnik Gmbh) 

- CATMAN software for data processing 

The tests are standard, as recommended by the International Rock Mechanics Association (ISRM): 

- Uniaxial compressive strength – according to Bieniawski, 1979;  

- Triaxial compressive strength –  according to Franklin, 1983;  

- Indirect tensile strength by Brazil test – according to Bieniawski & Hawkes, 1978.  

It should be noted that in laboratories, sample bodies formed from intact rock blocks are examined. 

Fractures in the rock body should be taken into account if real strength should be known. Numerous 

types of conditions of failure are published. Only the least and the highest main stress are taken into 

consideration by some methods and the middle value is neglected. These failure conditions can be 

illustrated in two dimensions as failure curves. If the middle main value is not neglected, three-

dimensional failure surfaces are required for the illustration. The rock mass can be recognized to a 

limited extent; furthermore, standard deviation of the strength results is significant due to the 
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inhomogeneity of the rocks. In practice, it is satisfactory to consider only the lowest and highest main 

stresses and use failure curves, as inaccuracy of this method does not exceed inaccuracy resulted by 

inhomogeneity. Therefore, applicability of failure curves is proven by practice. Such criteria based on the 

Mohr failure condition are the Mohr-Coulomb yield line, parabolic and hyperbolic curves and the Hoek-

Brown curve, as well. 

It is a well-known fact that no linear curves may be applied in the whole range of stresses (compressive and 

pull stresses). Hoek-Brown curves are widely used nowadays for the determination of characteristics of 

cracked rock masses. The curve in question was modified several times and was adjusted to evaluated in situ 

observations can be described as follows:  

sm
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where m and s are functions of rock quality and rock structure GSI (Geological Strength Index). 

For laboratory tests 
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where mi is a value between 5 and 35 describing intact rock mass. 

In the range of pull stresses and small compressive stresses, failure may well be described with parabolic 

curves but such curves yield no good approximation in the case of large compressive stresses. In this range, 

the correlation between normal and shear stresses is much more linear. All this led to the idea that it is 

suitable to apply a hyperbolic failure curve across the whole range of stresses.  

The main advantage of the proposed process by is that every element is supported by measurement results. 

The conventional triaxial compressive strength of the rock is measured for uniaxial pull, uniaxial compression 

and different side pressures as many times as possible. The average values of the measurement results 

obtained in this way are plotted on the σ–τ plane (Mohr plane). Then, according to the well-known principles 

of function approximation, the hyperbolic failure curve best accommodated to measurement results is 

determined (Figure 8.1). 
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Figure 8.1 Hyperbolic curve best accommodated to measurement results (Debreczeni, 2012) 

 

The recent information obtained from super-deep drillholes have revolutionized our knowledge regarding 

the prevailing stress conditions at great depth. As it is summarized from the results of the KTB drillholes, the 
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“stress magnitude profiles can be separated into the linear increase of individual stress components with 

depth (z) and the non-linear decrease of dimensionless stress ratios with depth (l/z) in agreement with 

simple elastic spherical shall models of the Earth’s crust. At a greater depth, the range of the lateral stress 

coefficient k narrows considerably and below 4 km the observed values generally approach one, Heim’s rule 

isotropic lithospheric stress is valid. At great depth, the lateral stress coefficient is smaller than one. Close to 

the surface of the Earth, horizontal stresses increase because the vertical stress decreases to zero at a free 

surface. Depending on the rock mass property, topography, erosion and tectonics near surface horizontal 

stresses can reach six times the vertical stress component” (Zang & Stephansson 2010). 

For the smaller depths Hoek & Brown’s (1980) model was widely accepted to predict stress developments 

with depth. The new KTB drillhole results have modified this view for depths greater than 3 kilometres 

(Figure 8.2). 

 
Figure 8.2 Vertical (a) and (b) horizontal (b) stress coefficients down to 3 km depths by Hoek and Brown 

(1980). The diagram (c) extends the depth to 9.1 km using the data obtained from the KTB drillhole. 

 

Tri-axial strength tests are useful to model the in-situ stress conditions. Pre-existing fracturing has high 

influence on strength at near surface conditions, but lose their importance at 3-5 km depth. At greater 

depths, the tensile strength of the rock has decreasing influence on the failure of rocks, at 5 km depth the in-

situ stress prevails irrespective of the rock strength properties. 
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9 Conclusions 

The aim of this study is to collect mineralogical, petrographical and geochemical data about 

different ore types which can be potential targets of the CHPM applications. The methodology for 

the petrophysical laboratory examinations is also characterized. The results will provide input for 

the rock mechanical and the leaching tests, which will be carried out in Work package 2. 

The examined rock and ore samples were collected mostly from the four study sites: The Cornubian 

Ore Field (England), the Banatitic Magmatic and Metallogenic Belt (Romania), the three mining 

districts of Sweden (Bergslagen, Skellefte and Northern Norrbotten), and the Iberian Pyrite Belt 

(Portugal). These samples were completed by further ones from Hungary so that more ore 

mineralization types should be represented. Altogether, 26 samples were studied. 

The samples were analysed by X-ray diffraction, X-ray fluorescence spectrometry, polarisation 

microscopy and electron microprobe and EDX measurements. The mineralogical analysis was 

qualitative as the samples do not represent the ore grade of the deposits. Beside the identification 

of the mineralogical and geochemical components, the textural parameters were also examined. 

The results were assessed and summarized with grouping the samples into the following ore types: 

skarn, porphyry, vein-type, MVT and VMS deposits.  

From the aspects of the CHPM technology, skarn mineralizations are preferable targets for multiply 

reasons. Their spatial extension and depth are in line with the requirements of the technology. The 

carbonate matrix is relatively easy to dissolve, increasing the permeability and the reactive surface 

of minerals for leaching, while the silicates remain intact and can serve as proppants. However, the 

technology can be developed in any rock type. 

It is important to emphasize that there are several limitations of drawing general conclusions in 

relevancy with the CHPM technology from the examination results. The samples represent the high-

grade parts of the ore deposits, while in the CHPM technology low-grade, extended ore bodies will 

be used. Furthermore, the number of the studied samples is small, and they do not represent the 

whole mineralized area they are from. The samples were taken from surface outcrops or from 

shallow depth while an EGS project established at a depth of several kilometres. It is also a problem 

that the samples do not provide information on the structural characteristics of the ore body. 

In spite of these limitations, the study is a good base for the following phases of the project. The 

mineralogical-geochemical data will be used when the leaching tests will be planned and assessed 

on the same samples. The mineralogy will also be considered during the interpretation of the 

petrophysical experiments. 
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