

British Geological Survey

Gateway to the Earth

Enhancing metal leaching in geothermal systems

C.A. ROCHELLE^{1*}, A. KILPATRICK¹, P. LUSTY¹, R. SHAW¹, D. FÜZÉRI² AND THE CHPM2030 PROJECT TEAM³

 ¹ British Geological Survey, Keyworth, Nottingham, UK, NG12 5GG (*correspondence: <u>caro@bgs.ac.uk</u>)
² Faculty of Earth Science and Engineering, University of Miskolc, Hungary

³ www.chpm2030.eu

www.chpm2030.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 654100.

Geochemistry of Geothermal Fluids workshop, Miskolc, Hungary, 26-27th October 2017

© NERC All rights reserved

The challenge

- EU needs clean energy & to reduce import dependency → enhanced (or engineered) geothermal systems (EGS), but operating costs are high.
- EU requires critical raw materials (limited domestic accessibility/mining) → may exist at depths beyond those targeted by commercial exploration/extraction.

Combined Heat, Power and Metal extraction from ultra-deep ore bodies

The concept

Identify ultra-deep metalliferous mineralization

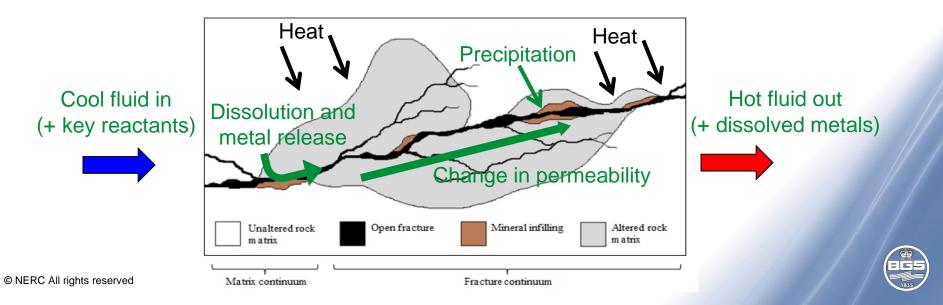
Establish an EGS

Enhance the existing fracture systems in the orebody

Leach metals from the orebody

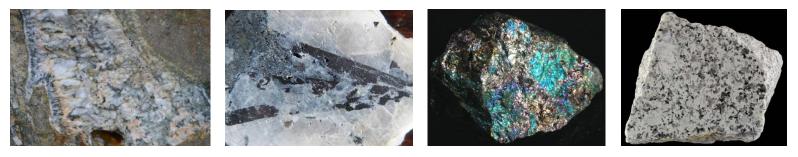
Extract metal from the brine

Produce heat and electricity


The hypothesis

- The composition/structure of orebodies is advantageous for development of EGS
- Metals can be leached in sufficient concentration and over a prologned period
- Continuous leaching of metal will increase the systems performance overtime without the need for high-pressure reservoir stimulation

Enhanced metal leaching in geothermal systems


Experimental work aims to address several knowledge gaps:

- Can relatively benign fluids be used to enhance metal leaching?
 - what metal <u>concentrations</u> and <u>release rates</u> can be expected?
- Can these metals be <u>kept in solution</u>, so that they can be successfully recovered at surface?
- Will mineral dissolution enhance reservoir permeability in the EGS?
- What is the risk of precipitation/scaling in the reservoir/surface infrastructure?

Laboratory experimental studies

• Samples: Ores from the UK (e.g. Herodsfoot [Pb-Ag-Sb]), plus also Europe.

- Fluids tested (to date):
 - De-ionised water & tap water (base cases)
 - 0.6M NaCl brine
 - CO₂-saturated fluids (enhanced acidity)
 - Dilute (0.1M) fluids:
- > Acetic acid/Ammonia (weak acid/alkali complexing agents)
- EDTA ('classic' complexing agent)

Multiple fluids: 70°C, atmospheric pressure

Promising fluids: 100-150°C, 200 bar

Best performing fluids: 200°C, 200 bar

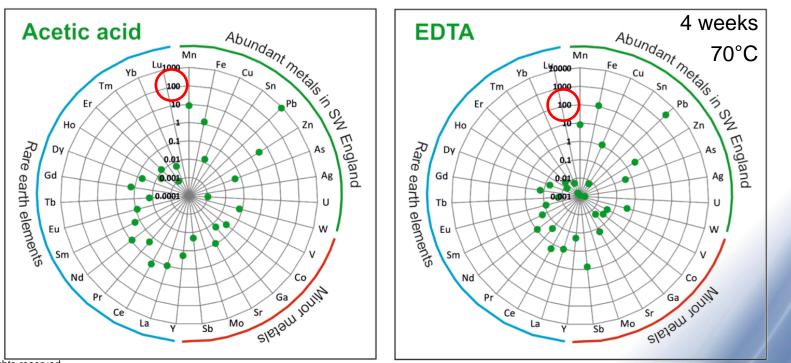
Flow-through, 200°C, 200 bar

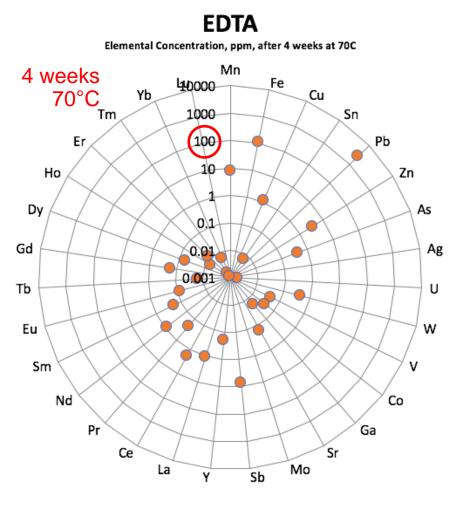
Sodium Dodecyl Sulphate (SDS) (surfactant & complexing agent)

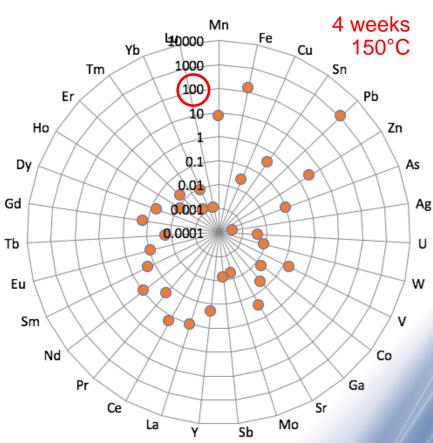
> Hydrogen peroxide (oxygenating, acid generating)

Experimental approach

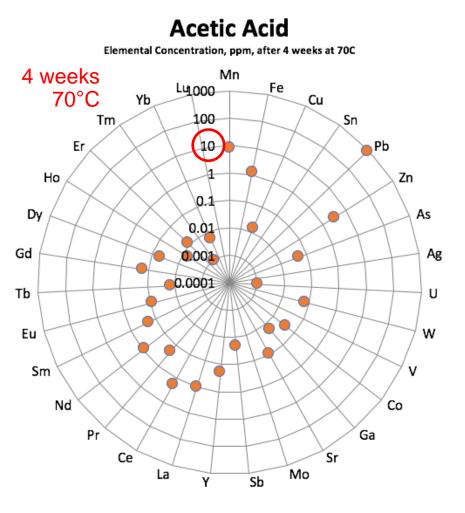
Sample ID.	Description	Deionised Water	Tap Water	0.6M NaCI		0.1M SDS	0.001M SDS	0.1M EDTA		0.001M EDTA	0.1M Acetic Acid		0.001M Acetic Acid	0.1M Ammonia	0.001M Ammonia	0.1M H2O2	CO2 Rich Water	0.1M HNO3, 0.03M HCI		Coke	
		70°C	70°C	70°C	100°C	150°C	70°C	70°C	70°C	150°C	70°C	70°C	150°C	70°C	70°C	70°C	100°C	100°C	100°C	200°C	150°C
CHPM 4	Carbonate hosted lead-zinc mineralisation (Hungary)				Х														Х		
CHPM 5	Quartz porphyry mineralisation (Hungary)				Х														Х		
CHPM 12	Lead sulphide mineralisation (Romania)				Х														Х		
CHPM 18	Skarn material (Romania)				Х														Х		
CHPM 20	Quartz porphyry mineralisation (Sweden)				Х														Х		
CHPM 26	Sulphide mineralisation (Portugal)				Х														Х		
BGS 319	Tin-tungsten mineralisation (Cornwall)	Х	Х	Х	Х		Х	Х	Х		Х	Х		Х	Х	Х	Х	Х			
BGS 315	Polymetallic mineralisation (Cornwall)	Х	Х	Х	Х		Х	Х	Х		Х	Х		Х	Х	Х	Х	Х			
CHPM 8	Meta-Sed hosted sulphide mineralisation (Cornwall)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х


Most (scoping) tests on UK material (3 lower rows, range of P, T, solutions). But also 100°C tests on 6 samples from elsewhere in Europe.

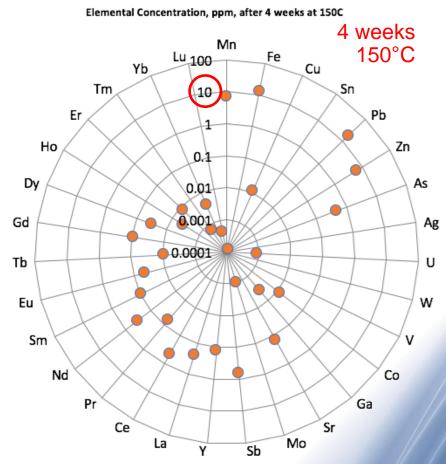



Leachate metal concentrations:

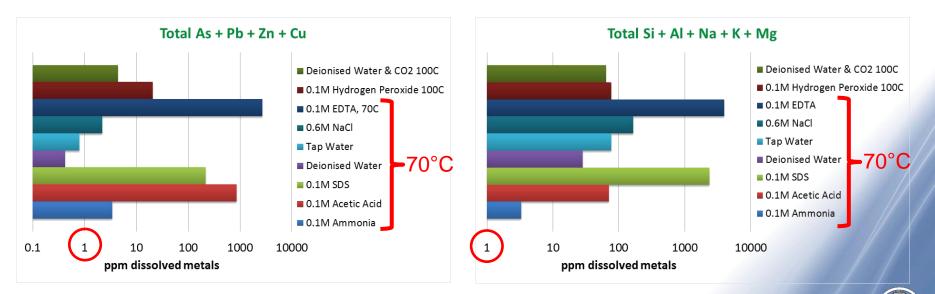
- Tap-water & deionised water: poorest performing fluids (addition of CO₂ improved leaching, but generally restricted to base metals).
- More effective fluids leach a wide range of metals.
- Best performing fluids: dilute EDTA, SDS and acetic acid (organics): 100-1000s ppm base metals & liberate some minor or 'critical ' metals.

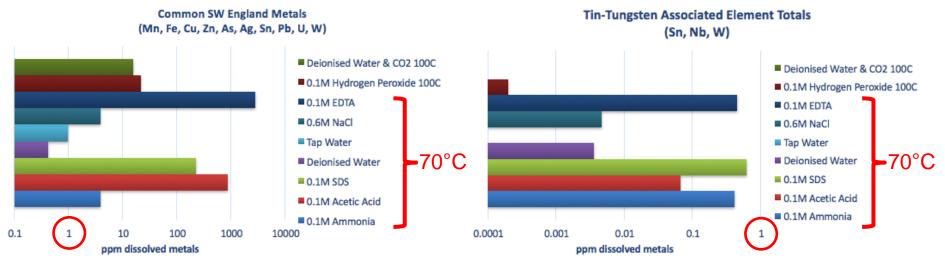


EDTA Elemental Concentration, ppm, after 4 weeks at 150C



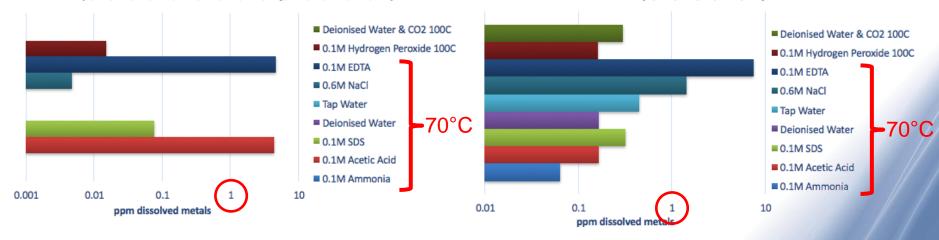
Acetic Acid



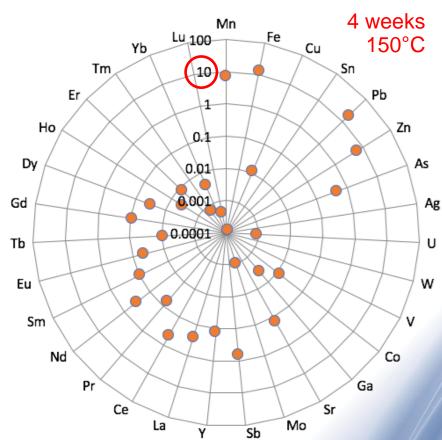


Comparing leachate performance:

- Group similar elements to demonstrate overall performance.
- Tap-water & deionised water were the poorest performing fluids.
- Dilute EDTA, SDS and acetic acid (organics) were the best performing fluids.
- Some metals (e.g. Ag) possibly being leached and then re-precipiated.
- Most fluids dissolved high loads (10s-1000s ppm) of elements derived from silicate minerals → implications for permeability of the EGS reservoir.



REEs (Y, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Tm, Yb, Lu)



Elemental Concentration, ppm, after 4 weeks at 150C 4 weeks Mn 150°C Lu 100 Fe Cu Yb Tm 10 Sn Pb Er 0.1 Но Zn 0.01 Dv As 0.001 Gd Ag 0.0001 0.00001 Tb U w Eu Sm v Nd Co Pr Ga Ce Sr Mo La Y Sb

Coke

Acetic Acid

Elemental Concentration, ppm, after 4 weeks at 150C

Summary and future work

- The ongoing CHPM2030 project investigates whether EGS takeup can be enhanced by adding a second revenue stream (metals) to heat energy.
- At the BGS we have been studying whether metal concentrations can be enhanced via additives in the recirculating fluid; data for some metals are promising, others less so.
- We are currently investigating:
 - Increasing temperature and contact time.
 - Utilisation of stronger, 'mineral' acids (diluted HCI, HNO₃) or a combination of fluid types.
- Reprecipitation of desirable elements in-situ may happen, possibly necessitating occasional modification to the fluid and 'flushing' of the system to mobilise these desirable metals.
- The impact of matrix dissolution and potential secondary phase precipitation on permeability is uncertain, and we will quantify this in future flow-through experiments.

