

Introduction and geochemical aspects of the DESCRAMBLE project

Giordano Montegrossi CNR-IGG, Firenze, Italy <u>montegrossi@igg.cnr.it</u>

Ruggero Bertani Enel Green Power, Pisa, Italy

This project proposes to drill in continental-crust, super-critical geothermal conditions, and to test and demonstrate novel drilling techniques to control gas emissions, the aggressive environment and the high temperature/pressure expected from the deep fluids. **The project will improve knowledge of deep chemical-physical conditions for predicting and controlling drilling at supercritical conditions.**

PROJECT ACTIVITIES

Section I: Drilling in super-critical conditions.

- > Develop procedures for well monitoring and control in order to secure the safety of the well in terms of health and the environment.
- > Selection/development of appropriate equipment and material to withstand the harsh downhole conditions.
- Definition/development of drilling procedures.
- > Development and testing of a novel logging tool

Section II: Geo-scientific activities to increase knowledge of super-critical wells.

> Geophysical survey and reinterpretation of all data before drilling for a better identification of the drilling target

DESCRAMBLE

- > Definition of procedures for supercritical fluid handling and sampling.
- > Definition of procedures and equipment for the production test.
- > Geophysical logs before and during drilling
- > Evaluation of petrological characteristics of the rock samples.

4.6 - Fluid Geochemistry

1 – Intercalibration/testing of sampling and analytical methods.

2 – Characterization of conventional fluids/gases before Venelle well deepening.

3 – Characterization of supercritical fluids sampled in the Target zone (2017-18).

DESCRAMBLE, WP4 – Tasks 4.6 and 4.7; Bruxelles, January 18, 2017

4.6 - Fluid Geochemistry

The main activity of Task 4.6 starts now, with the opening of the Venelle well and its deepening toward the Target zone.

Sampled wells provided geochemical-isotopic parameters that are consistent with the nature of the exploited conventional reservoirs.

4200 m; 1.5 Ma

4.7 - Granite intrusions

Peraluminous, silicic granites produced by the crystallization of crustal melts.

Magma was very rich in boron (*tourmaline*) and quite rich in other "volatiles" and "fluxes" like fluorine, lithium and, of course, water.

U-Pb dating on zircons is in progress in collaboration with Geneva University

4.7-Metamorphic rocks

Below 2300 m depth Bt-rich micaschists and amphibolites are widespread. The common occurrence of andalusite, cordierite and garnet porphyroblasts is typical of contact aureoles surrounding granite plutons in Tuscany.

A detailed EPMA study coupled with ⁴⁰Ar-³⁹Ar dating is in progress to determine P-T conditions and age of contact metamorphism.

Bt-rich amphibolite

(Puntone 4; 3290 m

4.7–Petrophysics

Petrophysical analyses evidenced heterogeneous thermal conductivities within the metamorphic basement that have been considered for the numerical modeling. Petrophysical experiment was successfully conducted in a multi-anvil pressure apparatus to determine the pressure and temperature effects on the seismic velocities.

2015-16 Activity
· 6 wells sample
• 12 cores

conductivity: Conductivity tensors, anisotropy, porosity.

Sensor ho	Heat C source	ore sampl			brati ple	on	Str 2	and	ard	
	cold	Core sample	λm.drv	[W m	⁻¹ K ⁻¹]	λm.sat	[W m	⁻¹ K ⁻¹]	K _{xz dry}	Kyz dry
ity		C11#9	2.59 0 0	0 2.51 0	0 0 2.95	3.22 0 0	0 3.42 0	0 0 3.86	1.1360	1.1679
led		P4B#7	1.70 0 0	0 1.76 0	0 0 2.08	2.15 0 0	0 2.21 0	0 0 2.50	1.2231	1.1792
	Thermal	C11A#14	4.33 0 0	0 2.95 0	0 0 4.83	4.97 0 0	0 3.42 0	0 0 5.32	1.1143	1.6270
	conductivity	C11A#19	3.71 0 0	0 3.68 0	0 0 4.03	3.76 0 0	0 3.67 0	0 0 4.36	1.0881	1.0948
V	seven core	SP#18	2.29 0 0	0 2.16 0	0 0 3.09	3.07 0 0	0 3.13 0	0 0 4.39	1.3339	1.4148
	samples and the	SP#10	/			2.0	98 () 3.) 09	/	/
	associated anisotropy	CAS#3	2.37 0 0	0 2.79 0	0 0 2.69	2.40 0 0	0 2.48 0	0 0 2.14	1.1207	0.9681
	factors Kxz									

Куz

4.7-HT Veins: geochemistry

Tourmaline from HT veins has light boron and heavy oxygen isotope composition consistent with an origin by magmatic fluids.

Differences in d¹¹B and Sr-Nd isotopes are consistent with the composition of nearest granite intrusion

DESCRAMBLE, WP4 – Tasks 4.6 and 4.7; Bruxelles, January 18, 2017

4.7-HT Veins: Fluid Inclusions

Two main types of fluids: 1) high-salinity or hypersaline fluids (up to 34 wt% NaCl equiv.) of magmatic origin; 2) aqueous-carbonic fluids derived by contact metamorphism reactions.

P-T conditions during inclusion trapping, estimated from fluid inclusion isochores, are around 740 bars (i.e. lithostatic) and 500°C for San Pompeo 2 - 2270.

For Carboli 11 - 3455 sample the estimated trapping T is lower, around 425°C, whereas P varies from lithostatic values, around 1000 bars, to hydrostatic pressure about 350 bars.

DESCRAMBLE, WP4 – Tasks 4.6 and 4.7; Bruxelles, January 18, 2017

Predicting Target fluid's P-T-X

Prange: variable, 350-740 bars

T range: 400-500 °C

X parameters: B-rich saline fluids associated with aqueous-carbonic fluids. Distinct isotopic signature.

New designed T&P logging tool

A new tool for measuring temperature and pressure at supercritical conditions has been designed and developed by SINTEF

Main features:

- Electronics, sensors and batteries operate within the range 10-200 °C
- Metal seal and pressure housing can withstand 450 bar/450 °C
- > 6 hours maximum downhole recording time at 450 °C

The measurements with the DESCRAMBLE tool in Lumiera 1 has good correlation with the measurements done with the Kuster K-10 in the same well

Task 5.2 Simulations of the surrounding of the Venelle 2 well during drilling Task 5.4 Simulation with TOUGH2

Supercritical version of TOUGH2: D5.3 Updated version of TOUGH2

Temperature distribution:

Left: from surface to -5000 m Right: from surface to K-Horizon

Pressure distribution:

Left from surface to -5000 m Right: from surface to K-Horizon

K Horizon represents a seismic marker which may be associated with overpressured fluids at supercritical conditions

Drilling the K horizon will open possibilities of exploiting deep supercritical fluids that could be hosted in the recent granites, with a new development phase for the Larderello field.

Advanced seismic imaging to identify the drilling target

- "best" possible 3D velocity model for as \geq accurately as possible determination of depth (and lateral location) of K-Horizon
- "best" possible "focused" 3D seismic \geq image of K-Horizon

Advanced seismic imaging to identify the drilling target

Well profile and casing string

Diametro	Grado	Peso nom.	Spessore	Dr	ift	Connessione	
				API	Special		
24 1/2"	J55	133 #	12.71 mm	23.125"	-	Tenaris ER	
18 5/8"	J55	96.5 #	12.32 mm	-	17.500"	Tenaris ER	
13 3/8"	L80 (*)	68 #	12.19 mm	12.259"		Tenaris ER	

(*) = 0 - 100 m Steel Grade L80 13%Cr

Diametro	Peso nom.	Spess.	Drift	Sp. Drift	Grado		Profe	ondità		Note
inches	lb/ft	mm	inches	inches	acciaio	Conness.	da m	a m	Descrizione	
										1
9 5/8"	43.5	11.05	API	-	L80	TSH ER	0	1000	Casing	
9 5/8"	43.5	11.05	API	-	L80	TSH ER	1000	2300	Liner	
										-
7"	32	11.506	-	6	TN125SS	TSH BLUE	0	1100	Casing	OK per t > 80°C
7"	32	11.506	-	6	TN125SS	TSH BLUE	1100	2250	Liner intermedio	OK per t > 80°C
7"	29	10.36	API	-	Т95	TSH BLUE	2250	2800	Liner profondo	Full Sour

The casing operations are completed with the 7" at 2600 m; there is the possibility of using an additional 6" liner in the deepest part of the well, in case of need

Rock bits

Rock bits commonly used in our geothermal drilling have three cones rolling on bearings.

The high temperature expected in K horizon can lead to failures because of the fast decay of elastomeric parts (Rubber and Kevlar).

- > Stinger bit has been selected as the best option
- No bearings subject to fast decay in high temperature
- Successfully tested on the Well Radicondoli 7 bis

Photo Album: cement

The high temperature Thermalock cement ready for the 7" casing cementing phase - operation completed

Photo Album: mud cooling

The reinforced mud cooling station

Photo Album: mud logging

The data acquisition station for drilling data and mud logging

Advanced well monitoring

Mud Logging system

- Geology master log from cuttings
- Monitoring drilling parameters (ROP, RPM, Torque, Flow in/out, T in/out)
- Collecting and analyze gas from mud: Total gas, CO₂, H₂, H₂S, CH₄ and He through a micro TCD+GC

Mud Cooling system

High temperature expected of the drilling fluid coming out. Cooling system needed to keep the fluid temperature in a range that maintain the rheological properties of the fluid itself and keep the drilling operation safe.

Managed pressure drilling

- Mitigation of the risks related to the uncertainty regarding the pore gradient and the fracture gradient
 23
- > Real time control of the annular pressure and of the wellbore parameters while drilling
- Closed-loop circulating system

Keep Drilling into the K target!

Core drilled samples (2600-2601.2 m depth) under investigation.

Continous gas monitoring during drilling:

Results updated up to 15/10/2017.

Many gas components are under surveillance, not only the main components (CO2, N2, H2S...) but also noble gases like He, and hydrocarbon from C1 to C6.

Reached a Temperature of 410 °C @ 2600 m

THANK YOU