Evaluation of Scaling Inhibitors in Geothermal Fluids at High Pressures and High Temperatures in Laboratory Scale

J. Zotzmann, S. Regenspurg

Workshop on the geochemistry of geothermal fluids
Miskolc, 26th October 2017

Problem

Inhibitor Requirements

Scaling inhibitors for geothermal application:

- Effective in low concentrations (low costs)
- Effective at high pressures and high temperatures (HPHT)
- Effective and stable over several months BUT:
- Degradable, non-persistent (green inhibitors)
- Low toxicity, no eutrophication (no phosphates, no phosphonates)
- Non-aggressive/corrosive for geothermal installations

Evaluation of Inhibitors

Evaluation of inhibitor efficiency:

- Determination of the minimal inhibitor-concentration (MIC),
 Measure for mass related effectivity (ppm)
- Two test methods under HPHT:
 - 1. <u>Static</u> Batch Test (chemical equilibrium)
 - 2. <u>Dynamic</u> Tube Blocking Test (influence of flow and surfaces)

Static Batch Tests

Dynamic Tube Blocking

Research at GFZ

Fluid chemical laboratory:

- static batch tests at HPHT conditions in autoclaves
- Investigation of inhibitor effectivity in dependence of p, T, pH,
 TDS (synthetic fluids and natural geothermal fluids)
- Investigation of thermal stability of inhibitors
- Characterisation of precipitated minerals

Analytical Methodology

- Online: Detection of inhibition in autoclaves by measurements of electrical conductivity, pH-value or redox potential at HPHT
- Offline: Effectivity evaluation by measurements of the mass of the precipitation and concentration of residual dissolved components (ICP-OES)
- Microscopic investigation of the scales (REM)
- Measurement of the thermal/chemical decomposition of the inhibitors at HPHT conditions by ATR-FTIR and LC-OCD

HPHT-Equipment

ATR-FTIR with HPHT measuring cell (200 bar, 200 °C)

Measuring cell

HPHT-Equipment

Stainless steel autoclaves (200 bar and 230 °C) with HPHTanalytical Sensors

2 Autoklavs coated with tantalum for highly corrosive fluids

LC-OCD Measurements

Degradation experiment: polycarboxylate inhibitor after 2 and 14 days treatment at HPHT-conditions

HPHT-Sensors

Detection of precipitation in static batch tests at HPHT by monitoring physico-chemical properties of the fluid (150 bar, 125 to 200 °C)

Available HPHT-sensors for measurements of:

- Electrical conductivity (limited to low salinity)
- pH-value (limited to pH-changing scaling)
- Redox potential

Measurements

Inhibitor effectivity in batch tests by measurement of pH-values

Calcite precipitation at **120** °C and **10 bar** with inhibitor MIC (50%) = 25 ppm

Calcite precipitation at **30** °C and **ambient pressure** with inhibitor MIC (50%) = 2 ppm

Investigation of Precipitates

REM pictures of calcite scales from HPHT-experiments (Magnification: 3270)

No Inhibitor

25 ppm Inhibitor

100 ppm Inhibitor

Results To Date

- Investigation of inhibitor effectivity: online detection limited to fluids with low salinity and carbonate scales
- Evaluation of inhibitor effectivity by static batch tests:
 significant decrease of effectivity under HPHT-conditions
- Investigation of inhibitor stability over 4 weeks at HPHT: polyacrylate/polyamide inhibitor was partially stable

Thank you for your attention!

