Geochemical modelling within the GeoWell project

GeoWell

Innovative materials and designs for long-life high-temperature geothermal wells Miskolc, 26/10/2017

Adeline Lach, Philippe Blanc, <u>Pierre Durst</u> BRGM

GeoWell project

H2020 three-year collaborative research project 8 partners and 3 third parties

Developing reliable, cost effective and environmentally safe technologies for design, completion and monitoring of high-temperature (>400°C) geothermal wells:

- Cement and sealing technologies
- Materials and coupling of casings
- •Temperature and strain measurements in wells using fibre optic technologies to monitor well integrity
- Development of risk assessment methods

The technology developed will be tested in laboratories and partly in real geothermal environment

GeoWell project - Geochemistry

Geochemical work within GeoWell is mostly about cements and carried out by BRGM and TNO

How will the cement behave at temperatures exceeding 400°C:

- Curing
- •Hydration/dehydration excess water pressure can damage the cement
- •Mineral phases evolution with temperature effect on the mechanical properties
- Long term duration

GeoWell project - Geochemistry

TNO is working on cement analysis and laboratory experiments and also on geochemical modelling

- ➤ IDDP-1 well (Iceland Deep Drilling Project)
- Located at Krafla geothermal field NE-Iceland which is operated by Landsvirkjun the national power company of Iceland
- Approximately 6 m of the well were dug up and sent to a workshop in Reykjavík to be examined
- Cement samples were taken from all cement layers (1-4)at the top and bottom locations from the 6m section

Source: TNO

GeoWell project - Geochemistry

BRGM is working on extending geochemical modelling possibilities to water

Geochemical modelling in supercritical conditions

Ex: Silica solubility

Xie and Walther, 1993

Geochemical modelling in supercritical conditions

Goals:

- Extending modelling code capacities
 - Higher temperature
 - Dependance on pressure
- •Extending/creating a thermodynamic database suited for those conditions

GEOCHEMICAL DEVELOPMENTS

Temperature extension

Current

Thermoddem.dat:

limited temperature at 300°C and 85 bars

GeoWell (Brgm contribution)

Technical challenges

Aqueous species:

- To implement T°C up to 600°C, 5 kbars

Minerals/gases:

To complete the database for the T
> 300°C conditions

Aqueous species

HKF estimates

Aqueous/mineral/gases

Test at T > 300°C (10 species thermodynamic + solubility data)

Extending to the whole database

Verification (geothermal/ hydrothermal field cases)

HKF MODEL

Useful to compute the equilibrium constant of aqueous complexes

Methodology

$$-\operatorname{RT} \ln K = \Delta G_r^0 = \sum_{produits} \Delta G_f^0(produits) - \sum_{reactif} \Delta G_f^0(reactif)$$

- The Gibbs free energy of formation is computed following HKF model using several parameters
 - The standard Gibbs free energy of formation at (T_r,P_r): obtained from equilibrium constant determined on experimental data
 - The standard entropy at (T_r,P_r):
 - For ionic species: found in the literature
 - For complex species: found in the literature, optimized on experimental data or computed using Sverjensky et al (1997) correlation
 - The HKF parameters:
 - For ionic species: found in the literature
 - For complex species: found in the literature, optimized on experimental data or computed using Sverjensky et al (1997) correlation

Objective:

Using Sverjensky et al (1997) correlation to determine equilibrium constant of aqueous species over a wide temperature range.

EXAMPLE

Dissociation constant of FeCl₂(aq)

- Parameters for ionic species are provided by Shock et al (1997)
- HKF parameters are determined using the correlation of Sverjensky et al (1997)
- Equilibrium constant obtained are compare with data provided by literature

Outlook:

i)Using this methodology on a restricted system to determine equilibrium constant of complex species at high temperature (between 0-600°C)

ii)Compare the results with literature data

iii)Realize calculation on a test case using this new model

DATABASE

Temperature extension

Objective

• A database allowing geochemical calculations up to 600°C with PHREEQC-V2

Starting point

PHREEQC-V3:

limited temperature at 350°C (due to of water properties)

Thermoddem.dat: limited temperature at 300°C

Provides equilibrium constants along a T-P profile

Evolution

EXAMPLE: implementing pressure effects

Stability diagram in the CaO-SiO₂-H₂O system

- Few modifications for the stability domains of the minerals
- More consequences expected for gases and hydrates

GeoWell project – Geochemistry – Next steps

Having a version of Phreeqc/database able to perform at supercritical temperature

Compare to lab results from TNO

Predictive modelling

Thank you for your attention

www.geowell-h2020.eu

